
Full stack development

Master of science internship

Max Halford

Supervisor: Raphaël Kolm
Referee: Thomas Madaule
April 11th - September 9th

Contents

1 Introduction 6

1.1 The company . 6

1.2 The organization . 6

1.3 The objective . 7

1.4 The workflow . 8

2 Application architecture 9

2.1 Goals . 9

2.2 Phase 1 . 11

2.3 Phase 2 . 12

2.4 Detailed view . 13

3 Features 16

3.1 Daily routine . 16

3.2 Establishment search refactoring . 17

3.2.1 Current status . 17

3.2.2 Goal . 18

3.2.3 Architecture . 19

3.2.4 User interaction . 20

3.2.5 Search Engine Optimization . 20

3.2.6 Layout . 21

3.2.7 Implementation . 22

3.2.8 Testing . 31

3.2.9 Results . 33

3.3 Lazy store . 34

3.4 Validating payloads . 36

4 Data science 39

1

4.1 Creating a data science code base . 39

4.2 Analyzing log files . 40

4.2.1 Producing log files . 40

4.2.2 Creating log dashboards with Logmatic 41

4.3 Transactional mail frameworks comparison 45

Appendices 48

A The tools 49

2

Figures

2.1 Architecture philosophy . 10

2.2 Architecture phase 1 . 12

2.3 Architecture phase 2 . 13

2.4 Architecture detailed view . 15

3.1 Snapshot of the user interaction with the search page 18

3.2 Vue components interaction . 19

3.3 Balsamiq mockup . 22

4.1 Endpoint total duration . 42

4.2 Event creations per hour . 43

4.3 Usage per user type . 43

4.4 Usage dashboard . 44

4.5 Transactional email providers comparison 45

3

Code

1 Vue filters component JS code . 24
2 Vue filters component HTML code . 25
3 Updating the markers on the map . 26
4 Capturing the map boundaries . 27
5 Fetching establishments from the backend 28
6 Applying filters in Python . 29
7 Filtering establishments with the chunk method 30
8 Testing the filtering in the service layer 32
9 Lazy store JavaScript implementation . 35
10 Lazy store example usage . 36
11 Validating the payload associated to an event creation 37
12 Custom voluptuous validators . 38
13 Conditional logging . 41
14 Transactional email providers comparison 46

4

Acknowledgements

I would sincerely like to thank the whole staff of Privateaser. It’s a small team and
at times it really felt like a family. The atmosphere was extremely good and I got the
chance to make the most of the nightlife in Paris.

I am grateful to the development team and my CTO for being patient with me and
for having taught me so much. I am happy to have been considered somewhat of an
equal to them and to not have been put in a box labeled “Intern”. I hope I have been
worthy and that the things I have worked on will not break!

5

Chapter 1

Introduction

1.1 The company

Privateaser is a start-up that aims at privatising bars, restaurants and clubs for medium
to large groups of people. It targets both professionals (B2B) and private individuals
(B2C). It aims to become a marketplace between event organizers and establishments.
The revenue model is simple, the user does not have to pay whilst the establishment
pays a prearranged fee. For the while Privateaser is only available in Paris, however
covering other cities is part of the vision of the company.

As of early 2016, Privateaser employs around 15 employees. Being a start-up, it’s
usual for this number to fluctuate. At the beginning of my internship we were 20 and a
few people joined the adventure as my internship went on.

The development team is composed of 5 people. It’s a tight knit group and every
member of the team has to be able to multitask.

1.2 The organization

Privateaser, from a developer perspective, is split into three entities:

• The public website, where users can find and then book places.

• The back-office, where the operational team manages people’s bookings.

• The manager application, where establishments can view and give feedback on
upcoming bookings.

Privateaser embraces AGILE concepts. When I arrived feature development was
done during 2 to 3 weeks sprints. Meetings were planned during the sprints and
an overview was performed at the end of a sprint. Stand-up meetings were done
every morning. Installation and integration are done in a continuous manner. During
my internship we experimented with variations of this so as not feel constrained by
concepts such as sprints and deadlines.

6

Code releases are frequent, the idea is to ship often and to maintain a balance
between intuition and A/B testing. Each release is versioned with a sequence following
the a.b.c format where

• a indicates the major release.

• b indicates a minor release, usually the output of a feature in a sprint (usually
daily).

• c indicates a patch/hotfix that can be put in place at any time.

The usual scenario for implementing a feature is

1. brainstorming during a workshop,

2. establishing a specification document,

3. building a model,

4. developing the feature,

5. iterating before release,

6. reviewing the code,

7. merging the code into production.

As previously mentioned, developers have to be very aware of the development
progress. As such, each developer is responsible for his features. Building with oth-
ers is encouraged whilst defending a personal opinion is not. Peer programming is
encouraged, as well as continuous refactoring, strong coding conventions and healthy
naming. However, it should never be forgotten that in the end all that matters is the
user.

1.3 The objective

During my internship there wasn’t a subject per say. The fact that we worked in sprints
and split each feature into smaller (and sometimes independent) tasks meant that the
kind we performed changed on a daily basis. On a given day I could working on the
public search page and on the next I could be checking log files for tracing bugs. In this
sense the title of full stack development seems appropriate.

During the internship I got to work on many concepts and technologies mostly
related to web development. This report is split into independent chapters and can be
read as such.

7

1.4 The workflow

Although the exact process for developing a feature fluctuated as time went on, the gist
of our workflow remained the same. Indeed, although the development grew quickly
and we had to redefine some of the details of our process, we established a sturdy
process for integrating a new feature into production.

As in any tech-driven company, the goal is to identify a business need and to
translate it into a feature that will be coded and integrated into the current state of the
application (called production). The business needs result from a roadmap that defines
the medium to long term goals and a backlog that encompasses general ideas/fixes
that can be brought to the application.

Features are regrouped into sprints that usually last two weeks. The goal during a
sprint is simply to integrate each feature. Integrating a feature means

• making sure the business needs are understood,

• implementing the feature with code,

• testing the feature and writing unit tests if time allows,

• getting the code reviewed by other (usually two) developers,

• getting feedback from other people than the developers.

Features can take hours as well as they can take weeks, however most of the
features are quite small and it’s possible for many features getting integrated into
production code every day.

The goal of a code review is to make sure the code in functional but also that it
respects the established code style conventions. This isn’t someone with a data science
background is accustomed to. However for developers this is extremely important as it
increases code maintainability. As a general rule, we strived for making sure the code
was written as if a single developer had written it. Sometimes this took even more
time than the actual implementation!

The process itself was quite classic, if a developer found a bug or a type in a feature
he was reviewing he would decline it and the author of the feature would fix it and ask
the reviewers to have another look until no issues remained.

8

Chapter 2

Application architecture

2.1 Goals

As of the period of my internship, Privateaser is growing quickly. The code base is
increasing in size in consequence. As well as developing new features to expand the
product, it is important for any developer to make early decisions so as to ensure a
good architecture. Even more so for Privateaser, where even at the business level the
application is split into three components, as explained in the introduction of this
report.

We did some brainstorming and had a meeting so as to decide of the architecture
at a “code” level. The objective is to use a battle tested and accepted standard so as to
bring coherence into the application in order to scale.

My preference is Uncle Bob’s “clean architecture”. Although there as many archi-
tectures as there are applications, I believe this one encompasses many good practices
that are the foundations of a scalable application. It’s pros outweigh it’s cons.

9

https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

Figure 2.1: Architecture philosophy

The application is split into layers that communicate in a unilateral way (here from
top to bottom). Each layer only “knows” the layer right below it. Layers shouldn’t call
distant layers, they should use intermediary layers. In theory there can be as many
layers as needed. For example one may want to add a CDN or a messaging queue
to handle the API requests to the service layer. However, a “simple” application like
Privateaser’s will only require the layers part of the previous figure, they constitute a
vital minimum for any healthy application:

Amongst other things, using this architecture renders the application

• independent of the user interface, it can be switched out without having to
refactor the backend.

• independent of the database because the rules are not bound to the database.

• independent of any framework because they are wrapped in functions that
are considered as tools.

• testable because the business rules can be run without the existence of a UI or
a database.

It’s difficult at first to realize how much good this brings to an application. This
is especially true for a small application where an architecture of this kind may seem
too much. However, many case examples can be made in favor of taking the time to
do this. For example if ever the storage backend changes because MySQL can’t handle
the load (unlikely) then only the storage service has to be changed. What’s more
this encourages building towards a service oriented architecture (SOA) where the
components/services don’t have any knowledge between each other. Everything going

10

in and out passes by an API, assuring separation of concerns and highly maintainable
code.

This “clean” architecture is more of a general advice as to how to structure an
application, not a specific blueprint for Privateaser’s needs. The next step is to descend
to a lower level and detail how this is architecture translates to our specific application.
In a nutshell our goal is to reach the target architecture in two phases.

2.2 Phase 1

First of all, we want to keep the fact of having a single application. However, we want
to split the dependencies and isolate the logic between the 3 applications. Inside each
application we want to make sure that the frontend is calling the backend through an
API which calls a service layer (just like the first diagram of this chapter).

It’s important and necessary to take this first step because there are many common
dependencies between each application. For example a lot of them share database
models or reference data necessary for generating HTML templates. In a sense this
step will still contain code duplication. However, clear factorizations will appear and a
unified API layer will be longing to be put in place.

Many steps can be taken so as to split the dependencies between each application.
A good example is to have separate Webpack bundles. Being large compared to the
others, the public application compiles JavaScript and CSS libraries that are useless
for the others. Thus compiling a separate bundle for each application seems like a
good idea. Of course if each application uses the same the same library then it will be
compiled and included separately in each bundle.

11

Figure 2.2: Architecture phase 1

2.3 Phase 2

The next (and final) step is to split the application into separate codebases. This some-
what drastic step will enforce us to split the dependencies between the applications
because they won’t even have access to each other. One of the issues that arises when
applying Phase 1 is that one realizes that there is a lot of code duplication occurring.
The solution is creation a separate code base that contains absolutely all the services
and the layers underneath it, similarly following diagram.

This way each application (reduced to it’s controllers and templates) doesn’t know
how the service layer functions. Interestingly, it shouldn’t even know it’s coded in
Python. This is because each application’s frontend should communicate with the
service layer through an API with the HTTP protocol.

Another benefit of splitting the application this way is that the code bases become
smaller, or at least their scope is greatly reduced. For example it would be possible for
a newly hired frontend developer to work on the public application’s templates and
controllers without having any knowledge or interaction with the backend.

Of course this description is a fairytale and the fact that we are not many program-

12

mers who each have a hefty workload regarding the product doesn’t make it each to
put this dream architecture in place. A web application is a bit like a house in the sense
that there is always something to do to make it “better”.

Figure 2.3: Architecture phase 2

2.4 Detailed view

The previous discussion may seem a bit esoteric. It didn’t mention how all our tooling
is used to manage the codebase. The following diagram tries to fix this by showing
where tools like Grunt and Alembic (described in appendix A). Grunt takes care of
generating the CSS files from the LESS files. Webpack generates the JS files with the
ES6 files. Alembic takes care of the database migrations in the service layer code base.

For the while all the backend code is written in Python, which allows a few dis-

13

crepancies regarding the permitted use of the models by the controllers. Splitting a
codebase into this kind of scaffolding is far from being trivial, hence some leniency is
necessary to move forward. Our plan is to do the most possible during offsprints and
when there isn’t some urgent business matter to attend to (which doesn’t occur often).
However, it’s nice to have these kind of diagrams in everyone’s mind. At least the new
features are being implemented with this architecture in mind.

14

Fi
gu

re
2.

4:
A

rc
hi

te
ct

ur
e

de
ta

ile
d

vi
ew

15

Chapter 3

Features

A feature is an addition to an application. Each feature is the result of a thought
process initiated by the thinking heads of the company. The features are organized in
a roadmap (which is nothing more than an Excel file) according to the time at which
they have/should be implemented.

Each feature is then split into smaller subtasks which can (and should) be dealt
with in a matter of hours/days. This progressive approach means that pull requests
are extremely frequent and code reviews are crucial to make sure buggy code doesn’t
get merged into production. Of course this isn’t an exact science and mistakes happen.

It’s important to emphasize the fact that the lifetime of a feature doesn’t stop when
it’s implemented. It’s got to be tested, code reviewed, product reviewed and finally
tracked for bugs after being put into production.

3.1 Daily routine

As touched upon during the introduction, my internship’s goals were not set in stone. In
essence my duties reflected the dynamic nature of a startup’s development team. First
of all our relatively small size meant that we all have to be available when an urgent
matter arises (bug fixing and the like). We also aim to split our features into small
steps which can be progressively added to the production codebase. It can happen
that most, if not all, of the team work on a particular feature through the proxy of small
but meaningful contributions. My daily work included:

• Identifying and fixing bugs.

• Reviewing pull requests for code style and product issues.

• ES6ify our JavaScript code base.

• Review our logs (detailed in the next chapter).

• Refactor the backend code base with the new architecture in mind.

16

3.2 Establishment search refactoring

3.2.1 Current status

As of now, the biggest feature I worked on was the refactoring of our search engine.
It’s also the feature where I contributed the most. Being a crucial part of the website,
the search page and the associated search engine were implemented by Privateaser’s
CTO right at the beginning of the company. In a sense the implementation was a bit
“quick and dirty” and it’s become legacy code. At the time Vue.js was not being used
and there were not many coding conventions.

One of the future features on the roadmap is to refactor the UI and the UX of the
search page. Currently the search page is not responsive, which is potentially hindering
our conversion rate. Also there hasn’t been any data driven approach to how the search
experience could be enhanced. For example the following Hotjar heatmap shows how
the users interact with the search page on average, but no decision has yet been made
as to how to exploit this knowledge.

17

Figure 3.1: Snapshot of the user interaction with the search page

From a development perspective, not much can be done to the search page without
an overhaul of the search page. Currently the implementation is difficult to understand
and the code is far from being maintainable. Currently the frontend code is a tangle of
JavaScript which is extremely difficult to grasp. Every time the user clicks on a filter
or pans/zooms the map an AJAX query is sent to the backend and all the matching
establishments are returned. It works but it’s extremely difficult to build on top of it,
thus a refactoring is required.

3.2.2 Goal

The goal is to refactor both the backend and the frontend logic of the search page. The
backend is working fine but a tidying up is necessary. The frontend needs a complete

18

overhaul, specifically data binding through Vue can be used to automatize most of the
updating of the UI. This stems from the fact that the establishment cards are supposed
to be exactly the same as the markers on the map. It would make sense if a single AJAX
would be made and a controller would hold the results before dispatching them to
the map and cards automatically. This is one-way binding and is something modern
JavaScript frameworks are based upon.

From a code quality perspective the goal is to implement extremely readable and
maintainable code because the search page is probably the biggest feature of the
Privateaser’s website. It’s essential that when new developers join the development
team they can dig into the code and build on top of it immediately. For the frontend we
can make extensive use of the ES6 syntax, both to reduce the size of the code base but
also to gain in readability. Furthermore we can create independent LESS files so that
frontend development isn’t hindered by searching through files for specific CSS classes.
There is already a dedicated function in the service layer for filtering establishments,
there isn’t much refactoring to be made on that side. However refactoring the logic of
the frontend will inevitably bring side effects which will have to handled in the service
layer.

There is also a strong need to keep the search page SEO friendly as it amounts for
a fair share of the traffic on the website.

3.2.3 Architecture

The frontend architecture will revolve around Vue’s capabilities. Like other frame-
works, Vue encourages developers to think in terms of components. For example the
search page can be schematized as follows.

Figure 3.2: Vue components interaction

There are 4 components, each component being responsible for a part of the search
page. The filters contained in EtabFilters are synced with EtabSearch which is the
main component supervising the others. There are different kind of filters:

• The kind of establishment (bar, restaurant or rental room).

• The date of the event.

19

• The number of people (abbreviated to pax) attending the event.

• Boolean values indicating if there is a pool table, if the bar is open after 2AM, etc.

The EtabSearch component is responsible for queying the backend and syncing
the resulting establishments with the map component (EtabMap) and the results com-
ponent (EtabFound). EtabSearch is the only component which doesn’t possess an
associated UI expression because it handles the communication between the compo-
nents.

3.2.4 User interaction

It’s important to define a sort of “story” to understand and predict what users expect
from a webpage. In our case a user wants to find an establishment which matches his
desires. When she clicks on a filter he expects the interface to update itself. Specifically
she wants the establishments to update and the markers on the map to be synced
with the cards. She also expects the moving the map and zooming in and out will filter
the results accordingly. Finally, she wants results to be displayed progressively as she
scrolls down the page (infinite loading).

There are two ways to update the results. Either the user clicks on some filters and
moves the map before clicking on an update button, either the results are loaded in
real time based on what the user does. Websites like Airbnb have implemented the
first option. As we discovered whilst looking inspiration, a lot of the websites who
have implemented the second option have done it incorrectly. Indeed we noticed many
websites had maps that didn’t update the results although it was indicated that they
should.

Another feature we want to the search page to have is to be “saveble”. Specifically
we want the URL in the search bar of the user’s browser to update with her interactions.
For example if the user is looking for a bar with a dance-floor then the URL should be
www.privateaser.com/reservation-bar?dancefloor=1. The URL has to be expres-
sive so as to be human readable (something content crawlers reward websites). First
of all this is useful for users because they will be able to save a link that answers their
needs. For example they can send the link to a friend. Secondly this will enable us to
build on top of it and create preset pages which will serve as guides on the website.
Finally this is also handy for our consumer service who are often looking for the same
of filter combinations. Thankfully updating the parameters of the URL has become
trivial with HTML5.

3.2.5 Search Engine Optimization

One of the great concerns of e-commerce websites is to be highly ranked on search
engines. To do so the content of each page should be semantically correct and should
also contain keywords which are considered “popular”.

The way in which content crawlers (for example Google bot) parse a webpage is
crucial to understand. It’s important to understand that there are different stages

20

when a webpage loads. Currently most crawlers disable all the JavaScript on a page and
only extract the HTML rendered by the server. This means that all client site content
isn’t noticed by content crawlers. Sadly, Vue doesn’t permit server-side rendering. This
is a key issue that often arises with modern frameworks. Vue is not yet as mature as
React and Angular, and so the tooling around it is considered a bit weak.

The conundrum is that we want to preserve our SEO strengh by server-rendering
HTML content whilst at the same making the most of Vue’s capacities to synchronize
data. The solution we took was to do an initial server-side rendering with unfiltered
establishments and immediately removing the generated HTML with our Vue com-
ponents. This replacing doesn’t trigger for content crawlers because they disable
JavaScript and thus don’t allow Vue to function. One concern is that a “flash” might
occur during the split second where the switch occurs, but as will see nothing is visible
to the human eye.

3.2.6 Layout

The following figure shows how the Vue components and the initial HTML server-
rendering (with Jinja) are organized.

21

Figure 3.3: Balsamiq mockup

3.2.7 Implementation

Vue components

The first implemented component was the filters components. It’s quite simple in the
sense that it only has to be synced with the root controller. For this Vue’s two way data
binding features is extremely useful.

Props are a mechanism for passing data between components. Aside from this
each component has it’s private data that other components can’t and shouldn’t access.
In this particular case the filters are passed as props and they are two-way binded
(twoWay: True). This means that whatever happens to the filters object, it will be
updated both in the filters component and the root controller. The components also
notifies the root that it is ready, this is useful for updating the UI and enabling/disabling
loading overlays that are useful for making users more enjoyably.

Each object of the component is then linked to an HTML component. When the
HTML component changes the data and the props are automatically updated. For

22

example if the user clicks on a filter it then become true, and because it is binded with
the root component then the root component also updates. This update mechanism
enables us to code in a declarative fashion without having to worry of what happens
behind the scenes because Vue handles it for us.

The same ideas prevail for the map component. The gist of it is that the root will
query the backend based on the filters from the filters component and then “pass
down” the resulting establishments through propping. The subtlety is that the results
provided by the backend may (and often do) overlap the current results. Adding a new
marker on top of an already existing is not a good idea. First of all the UI result isn’t
nice, secondly it adds a useless load to the map which is already full of markers. To
sidestep this one can use symmetrical differences in the following way:

1. Only keep the new etabs that are not already on the map.

2. Remove the etabs that are not part of the establishments from the map.

3. Add the remaining new etabs to the map.

Luckily Google Map’s API provides simple functions for adding and removing
markers from a map. Each Vue component can add a watcher to any of it’s props and
data properties to detail what occurs when it changes. In the map component’s case
we want it to update the map each time it’s list of establishment changes.

23

1 export default {
2 props: {
3 filters: { type: Object, required: true, twoWay: true },
4 state: { type: String, required: true }
5 },
6 data: () => (
7 {
8 formattedDate: '',
9 dateError: false,

10 datepicker: null
11 };
12),
13 watch: {
14 'filters.date': function(newDate) {

this.datepicker.setMoment(newDate); },↪→

15 'formattedDate': function(newFormattedDate) {
16 const m = moment(newFormattedDate, 'DD/MM/YYYY');
17 if (m.isValid()) { this.filters.date = m; this.dateError

= false; }↪→

18 else this.dateError = true;
19 }
20 },
21 ready: function() {
22 this.datepicker = new Pikaday({
23 field: this.$els.date,
24 minDate: moment().toDate(),
25 format: 'DD/MM/YYYY',
26 });
27 this.$emit('ready');
28 }
29 };

Listing 1: Vue filters component JS code

24

1 <div class="radio filters-radio">
2 <label>
3 <input type="radio" value="reservation-bar"

v-model="filters.universe">↪→

4 Reservation de bar
5 </label>
6 </div>
7 <div class="radio filters-radio">
8 <label>
9 <input type="radio" value="restaurant-groupe"

v-model="filters.universe">↪→

10 Restaurant pour groupe
11 </label>
12 </div>
13 <div class="radio filters-radio">
14 <label>
15 <input type="radio" value="location-salle"

v-model="filters.universe">↪→

16 Location de salle
17 </label>
18 </div>

Listing 2: Vue filters component HTML code

25

1 watch: {
2 etabs: function() {
3 for (let etabID in this.markers) {
4 if (!(etabID in this.etabs)) {
5 this.markers[etabID].setMap(null);
6 delete this.markers[etabID];
7 }
8 }
9 for (let i = 0; i < this.etabs.length; i++) {

10 const etab = this.etabs[i];
11 if (!(etab.id in this.markers)) {
12 const marker = new google.maps.Marker({
13 position: { lat: etab.latitude, lng:

etab.longitude },↪→

14 map: this.map
15 });
16 (function(etab, marker, map, self) {
17 google.maps.event.addListener(marker, 'click',

() => {↪→

18 self.infoWindow.setContent(
19 self.getInfoWindowContent(etab)
20);
21 self.infoWindow.open(map, marker);
22 });
23 })(etab, marker, this.map, this);
24 this.markers[etab.id] = marker;
25 }
26 }
27 }
28 }

Listing 3: Updating the markers on the map

Just like the filters component, the map has to send the current map coordinates
to filter the establishments. Yet again two-way binding can be used. In a sense each
sub-component (the map and the the filters) contains a subset of the filters contained
in the root component.

To sum up, every time the UI changes because of user interaction (because of a click
on a filter on a zoom on the map) the data contained in the Vue changes automatically.
On top of this we add watchers to specify what should happen when the data changes.

26

1 capturePosition: () => {
2 const bounds = this.map.getBounds();
3 this.latMin = bounds.getSouthWest().lat();
4 this.latMax = bounds.getNorthEast().lat();
5 this.lngMin = bounds.getSouthWest().lng();
6 this.lngMax = bounds.getNorthEast().lng();
7 }

Listing 4: Capturing the map boundaries

Each time the sub-components update the root component, a trigger is actioned to
go fetch matching establishments. Again, this is done through a watcher. The following
code snippet is the result of a lot of tinkering with the goal of mind of making the
code readable and high-level. The patchUriWithParams does exactly what it’s called.
The advantage is that by creating external (somewhat generic) functions, the code
becomes readable and a new developer can quickly understand how the data flows.
The internalFetch is a tool we developed later to reduce the boilerplate code to
perform an AJAX query to the backend. It takes as parameters an HTTP method and a
URL and returns JSON data.

Filtering establishments

The internalFetch method in the frontend calls upon an API path called api/etabs.
This path provides a link between the JavaScript frontend and the Python service layer.
Specifically it taps into a method called etab.filter which takes as input a dictionary
of filters and outputs matching establishments.

We make good use of the SQLAlchemy ORM with which we can conditionally filter
an initial set of establishments with the filter method. Behind the scenes SQLAlchemy
will translate the filters into real SQL code and run it when we call the .all() method.

Infinite scrolling

As was the case before and as it should remain, the user should be able to obtain
more establishments if he scrolls down the page. An naïve implementation would
be to return all the establishments when an AJAX call is made and then display them
progressively with some JavaScript magic. However this seems quickly unreasonable
because of the networking cost because As of May 2016 Privateaser has more than
available 800 establishments. It currently manages the load but it is in no way scalable.

A smarter way of doing is to use an offset/limit method. The basic idea is to send
streaming data to the frontend based on how far the user has scrolled down the page.
For example if 250 establishments match the user’s filters, there isn’t much sense
in loading each establishment because there isn’t even enough space of the page to
display them. The answer is to paginate the data. Classic pagination means that the

27

1 fetchEtabs: function(append) {
2 this.state = 'loading';
3 // Build the URL
4 let fetchUri = URI(window.location.origin);
5 fetchUri.pathname('api/etabs');
6 fetchUri.setSearch({ 'universe': this.params.universe });
7 patchUriWithParams(fetchUri, this.params);
8 // In append mode (scrolling), add offset; otherwise (changing

filters), reset↪→

9 if (append) this.offset += 30 + this.skippedEtabsCount;
10 else this.offset = 0;
11 fetchUri.setSearch({ 'offset': this.offset });
12 // Call the API
13 internalFetch('GET', fetchUri.toString())
14 .then((json) => {
15 if (!append) this.etabs = json.etabs;
16 else this.etabs.push(...json.etabs);
17 this.totalEtabsCount = json.total;
18 this.skippedEtabsCount = json.skippedEtabsCount;
19 this.updateHeaderText();
20 this.state = 'ready';
21 });
22 }

Listing 5: Fetching establishments from the backend

user can click on a “Go to the next page” button to view more results. More modern
applications then to implement infinite scrolling so that the user doesn’t have to click.
This makes good UX sense; for example Google has shown how most users never go on
the second page of list of Google results. Popular websites like Facebook and Instagram
have implemented infinite scrolling to great success.

Code-wise the idea to use two variables called offset and limit. At the beginning
the offset is worth 0 and the limit is worth k (with k usually around 30). When the
page loads the first k establishments matching the current filters are added to the
page. When the user scrolls down the page and has just about finished viewing the
current k establishments, the offset and the limit both increase by k so that offset
is worth k and the limit is worth 2k. A new AJAX is then sent to the backend with the
updated offset and limit values. Database-wise this works very efficiently because
the SQL backend never has to return all the matching establishments. Thus the load is
reduced between the backend and the frontend and also between the database and
the backend.

An area of concern is to how to know exactly when to trigger the update of the
offset and the limit variables. It took a few iterations and some feedback from the

28

1 q = self.find(query=True)
2

3 if params.get('universe') == 'bar':
4 q = q.filter(Etablissement.type_bar == True)
5 elif params.get('universe') == 'restaurant':
6 q = q.filter(Etablissement.type_restaurant == True)
7 elif params.get('universe') == 'rental_room':
8 q = q.filter(Etablissement.type_rental_room == True)
9

10 establishments = q.all()
11 return establishments

Listing 6: Applying filters in Python

users to make the transition smooth.

Managing availabilities

One of the trickiest things we had to handle was the availabilities of the establishments.
Basically each establishments has a limited number of spaces on any given date. Specif-
ically there is a dedicated set of functions to answer the question Is establishment x
available on data y for z customers?.

When all the matching establishments were loaded to the search one simply had
to call this set of functions for each establishment. However, because we are now
promising of sending batches of k establishment to the frontend, we have to handle
this in a different way.

The frontend expects to receive k establishments. The backend can be naïve and
simply find the establishments between the offset and limit values before filtering
them based on the availabilities. However if some of the establishments are not avail-
able then less than k establishments will be sent to the frontend. It’s each to solve this
problem if the entire set of establishments is available because one could filter the
establishments b availability before applying the offset and limit variables.

The issue is that the database returns the establishments in chunks of size k. The
solution is to query a chunk and check for it’s availabilities. If enough establishments
then they can be sent to the frontend. If there are not enough then we increase the
offset and the limit and query a contiguous chunk. The matching establishments
in the new chunk are appended to the initial chunk. The process is repeated until
enough establishments are found and while there are remaining establishments in the
database.

The goal of this way doing is to limit the bandwidth between the database and the
backend. The bandwidth is already reduced between the backend and the frontend
because the infinite scrolling paradigm. The naïve solution to solve the availability

29

issue would be to query all the establishments from the database and filter them in
the service layer with Python. However this would max out the bandwidth between
the database and the backend. The “chunk method” that I proposed strikes the right
balance between speed and memory efficiency. Being a heuristic method it’s difficult
to know exactly how many establishments to query per chunk to obtain the desired
number of establishments. Querying the establishments one-by-one in a stream-like
fashion would be good bandwidth-wise but the number of queries would explode. A
simple heuristic we adopted was to query 10% more than the k needed number of
establishments per chunk. We call this higher_limit in the following snippet.

Initially this worked until we realized that we needed to know how many establish-
ments were not available for subsequent calls. There was a bug on the website where
establishment would appear twice on the search page. This was due to the fact that
we didn’t memorize how many chunks we had checked, subsequent calls would then
tap into already checked chunks and would return establishments that were already
loaded in the past. It took us quite some time to figure where the bug was coming from.

1 higher_limit = limit * 1.2
2 results = []
3 skipped_etabs_count = 0
4

5 while len(results) < limit and offset < total:
6 chunk = q.offset(offset).limit(higher_limit).all()
7 if params.get('date'):
8 occupancy = s.ea.get_etabs_occupancy(chunk, params['date'])
9 for etab in chunk:

10 if occupancy[etab.id].free_pax > (params.get('pax_min')
or 0):↪→

11 results.append(etab)
12 else:
13 skipped_etabs_count += 1
14 if len(results) == limit:
15 break
16 chunks_lengths.append(len(results))
17 offset += higher_limit
18 else:
19 results = chunk[:limit]
20

21 return results, total, skipped_etabs_count

Listing 7: Filtering establishments with the chunk method

30

Conditionally Disabling content crawlers

Another issue is that by nature content crawlers try to index every possible URL on a
website. However the number of indexed pages is limited per website. This means that
if two pages with distinct URLs share the same content then it’s redundant to allow
content crawler’s to index both pages. In our case, we are appending parameters to the
URL, thus we have extremely high number of pages who have the same content. For
example slightly changing the geographical filters doesn’t result in different results
and yet the content crawlers will treat the resulting pages as a different one.

Our temporary solution is to completely disallow web crawling for URLs associated
to the search page that contain parameters. This way only the unfiltered results will
be indexed. This works well because the unfiltered results are supposed to display the
30 establishments of a given category with the highest ratings, and thus who possess a
strong SEO impact. Later on, when implementing filter presets we can start allowing
the crawlers to index certain pages because the page has be tailored for that particular
SEO purpose. Specifically the access can be controlled by modifying the robots.txt of
the application and by conditionally adding a noindex tag in the header of the search
page.

3.2.8 Testing

Our development process doesn’t require us to write unit tests for every single feature
we implement. Because of this we don’t have a testing suite or any strong opinions
on how to run our tests. Python however possesses many testing frameworks such as
unittest, pytest and nosetests.

I decided to implement some simple unit tests to make sure each filter on the
search page is working from a service layer point of view. The idea is simply to check
that by checking a filter the number of matching establishments is lower than the
total number of establishments. This both serves the purpose of making sure the
service is layer is functional when new features are implemented on top of it, but
also as a proof of concept for future testing implementations. Specifically we agreed I
could try implementing the tests with pytest, it being the most popular Python testing
framework. The nice thing about pytest is that it doesn’t impose it’s own grammar.
Conditional logic can be written in plain Python and that’s it.

Something specific I got accustomed with was the whole concept of setup and
tear down of a test. The idea is that each test should build itself from the ground
up and build all the pieces necessary for it’s specific scope. Testing on an example
database isn’t a good idea. First of all side effects can occur (sending involuntary mails
for example) and secondly the database’s state isn’t known if it’s not been setup right
before the test. In our case the setup consists in creating an in-memory database (with
SQLite) and refiling it’s content with predictable data.

We are slowly leaning towards implementing many end to end tests with the
popular Selenium framework. Specifically the idea is to mimick the behavior of a user
by instructing a robot to programmatically perform actions on the websites and check
that the UI responses are coherent.

31

1 class BaseTestCase(object):
2

3 @classmethod
4 def setup_class(cls): the new engine
5 app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://'
6 database.engine =

create_engine(app.config['SQLALCHEMY_DATABASE_URI'])↪→

7 database.Base.metadata.create_all(database.engine)
8 database.db_session =

scoped_session(sessionmaker(bind=database.engine))↪→

9 app.config['NOTIFICATION_EMAIL_ADDRESS'] =
'nobody@privateaser.com'↪→

10

11 class TestEtabFilter(BaseTestCase):
12

13 s = ServiceContainer(db_session(), app.config, app.jinja_env,
logger)↪→

14

15 @classmethod
16 def setup_class(cls):
17 super(TestEtabFilter, cls).setup_class()
18 cls.params = {}
19 _, cls.unfiltered_count, __ =

cls.s.etab.filter(**cls.params)↪→

20

21 def test_etab_filter_universe(self):
22 universes = (
23 'bar',
24 'restaurant',
25 'rental_room'
26)
27 for universe in universes:
28 self.params['universe'] = universe
29 _, filtered_count, __ = self.s.etab.filter(**self.params)
30 assert filtered_count < self.unfiltered_count

Listing 8: Testing the filtering in the service layer

32

3.2.9 Results

Implementing the new search engine was an extremely enriching personal experience.
I already a lot of the concepts I used but putting them in place and seeing them put into
production was undeniably satisfying. The peer reviews put things into perspective
and allowed to really understand what was to be expected from a SOA architecture and
allowed me to better myself in JavaScript. I’m happy to have been able to implement an
infinite scrolling system and to have proposed the chunk algorithm we used. Without
being too pretentious the search page is working extremely well and it’s much more
advanced that a lot of other more popular websites.

From a business standpoint the UI or the UX didn’t really. However we noted a
reduction in average querying time from 1.5 to 0.5 seconds, which is quite huge. This
is most certainly to the more efficient bandwidth usage obtained with the offset/limit
usage and the chunk method.

From a developer perspective the code is much easier to get into. Funnily enough
when I was done with the code was put into production we noticed that there were
more deletions (1725) than insertions (1668). In a sense this is good news because
the application is doing the same job as before, but in a more efficient manner (speed
and bandwidth) and with less lines of code.

33

3.3 Lazy store

Another feature I got to work was implementing a pattern for querying and memoizing
queries. This stems from the fact that there are pages in the back-office where queries
are performed multiple times, mostly because of weak organization of Vue components.

It sometimes occur that a Vue components queries the list of establishment of
customers to put them in a select box or some fancy UI widget. Normally a parent
Vue component should perform the necessary queries and should pass the data to it’s
child components by propping down the data, just like we did with the search page.
One of the solutions would be to re-organize the Vue components so as to follow the
recommended patterns. However this is a lot of work and we decided to go a different
way.

The design pattern we agreed upon was similar to a singleton. The idea is that
there is no sense in performing a query that has already been performed on the same
page. This is where memoization comes into play. We want to create an object that can
store and return the result of a query in lazy manner. The usage of the object should
be transparent. We should be able to ask the object for a result and the object should
decide what it has to do based on the it’s current state.

We decided to call this object lazyStore. After some iterations and some discus-
sions we decided it should have 4 states:

1. empty: The lazyStore doesn’t contain any data and has never been asked to do
anything.

2. loading: The lazyStore has been queried and it is fetching data.

3. ready: The lazyStore has finished it’s first query and has stored the data inter-
nally.

4. failed: The lazyStore couldn’t perform the initial query.

The first query will put the lazyStore in loading state. The next queries will then
understand that a similar query has already been made and that they have to wait. If
the lazyStore is ready then it doesn’t have to re-do the query, it simply returns the
stored data.

We went a bit further in the sense that we used the modern concept of promises.
A promise is a object that can be used even it doesn’t exist. Promises are difficult to
grasp at the beginning and they can be a headache to put in place. The fact is that they
should be used in modern applications for fetching data asynchronously. Basically
a promise can be passed and used in functions until it’s content is really needed. In
this sense promises allow efficient lazy usage of data. Wrapping the whole promise
machinery inside the lazyStore allows it’s external use as a blackbox.

34

1 function LazyStore(loadFunction) {
2

3 this._state = 'empty'; // empty, loading, ready, failed
4 this._data = null;
5 this._loadingPromise = null;
6

7 this.getData = function() {
8 if (this._state === 'empty') {
9 this._state = 'loading';

10 this._loadingPromise = new Promise((resolve, reject) => {
11 loadFunction().then(
12 value => {
13 this._state = 'ready';
14 this._data = value;
15 resolve(this._data);
16 }
17).catch(
18 reason => {
19 this._state = 'failed';
20 reject('loadFunction failed');
21 }
22);
23 });
24 return this._loadingPromise;
25 }
26 else if (this._state === 'loading') {
27 return this._loadingPromise;
28 }
29 else if (this._state === 'ready') {
30 return new Promise((resolve, reject) => {
31 resolve(this._data);
32 });
33 }
34 else if (this._state === 'failed') {
35 return new Promise((resolve, reject) => {
36 reject('loadFunction failed');
37 });
38 }
39 };
40 }

Listing 9: Lazy store JavaScript implementation

35

The usage of the lazyStore is extremely simple. We basically have a stores.js
file containing a store for each query towards that it often performed. The store can
then be importing like any other JavaScript object between files. The last 3 lines of the
following snippet clearly show how easy the usage is.

1 const allEtabs = new LazyStore(() => {
2 fetch('/admin/api/etabs/find',
3 {
4 credentials: 'same-origin'
5 }
6)
7 .then(r => r.json())
8 .then(data => data.etabs);
9 });

10

11 allEtabs.getData().then((data) => {
12 // Do something with the data
13 });

Listing 10: Lazy store example usage

3.4 Validating payloads

Python is an interpreted language. In this sense the type and structure of objects it
handles is only determined at runtime. The issue that often arises is that incoming
data towards the API (called payload) doesn’t have to be shaped of any particular way
for an API endpoint to execture itself. However, each API endpoint is expecting the
payload to contain certain parameters for it to behave correctly. Typed languages such
as C, Java and Go don’t have this problem because the data has to be unmarshalled;
unstructured data isn’t permitted.

The business issue is that we don’t want to users to be able to input, for example,
invalid email addresses and telephone numbers. Code wise there is a discrepancy
between what the frontend returns, for example french formatted dates and times.
Dates and times are usually manipulated through Python datetime objects. This is a
simple example but the point is that incoming has always got to be transformed so it
can suit the backends programming language data types. This is because JSON only
strings and numerics.

Converting between universal data types and programming language specific types
is called coercion. Coercion is automatically through type unmarshallig but it isn’t
something natively integrated to Python. Usually the data is parsed when needed. The
ugly truth is that the API required a certain format but it accepts just about anything.
To solve this problem we decided to use a data validation library called voluptuous
which solves two problems:

36

• It makes sure a dictionary has a certain structure.

• It converts the dictionary variables as necessary.

In the following example the payload associated to an event creation is validated
with voluptuous. The declaration is declarative, which is quite reasonable regarding
data validation. The example is quite in the sense that the incoming payload doesn’t
contain any imbrication. However, a nice feature of voluptuous is that schemas can be
composed so that complex data can be validated by using already existing schemas.

1 @app.route('/api/events', methods=['POST'])
2 @json_response
3 def event_create():
4

5 validator = Schema({
6 Required('event_date'): Date('%Y-%m-%d'),
7 Required('event_time'): Time('%H:%M:%S'),
8 Required('pax_min'): All(int, Range(min=0)),
9 Required('pax_max'): All(int, Range(min=0)),

10 Required('booking_mode_key'): Any(unicode, None),
11 Required('booker_first_name'): Any(All(unicode,

Length(min=1)), None),↪→

12 Required('booker_last_name'): Any(All(unicode,
Length(min=1)), None),↪→

13 Required('booker_phone_number'): Any(All(unicode,
PhoneNumber), None),↪→

14 Required('booker_email_address'): Any(All(unicode, Email),
None),↪→

15 Required('booker_description'): Any(unicode, None),
16 Required('requires_quotation'): bool,
17 Required('etab_id'): int,
18 Required('promo_id'): Any(int, None)
19 })
20

21 data = json.loads(request.data)
22

23 try:
24 data = validator(data)
25 except MultipleInvalid as e:
26 raise ValueError('Invalid incoming payload')

Listing 11: Validating the payload associated to an event creation

37

voluptuous allows and encourages developers to write custom validators. For
example the following snippet shows how to coerce string to date and time objects
and email and phone numbers.

1 def Date(fmt):
2 return lambda v: datetime.datetime.strptime(v, fmt).date()
3

4

5 def Time(fmt):
6 return lambda v: datetime.datetime.strptime(v, fmt).time()
7

8

9 def Email(msg=None):
10 def validate(value):
11 if '@' in value:
12 return value
13 else:
14 raise Invalid(msg or 'Invalid email address format')
15 return validate
16

17

18 def PhoneNumber(msg=None):
19 def validate(value):
20 if re.match(ref_data.PHONE_NUMBER_FORMAT_REGEX, value):
21 return value
22 else:
23 raise Invalid(msg or 'Invalid phone number format')
24 return validate

Listing 12: Custom voluptuous validators

To sum up, every time an API query is performed, the incoming payload is validated
and coerced. If one of the two operations fails then an error is raised; the error has
a 500 code attached so it can easily be understood and communicated to the user if
necessary. Coupled to the fact that we can also sync the validators with the JavaScript
frontend by using the regex validators this renders our API tight and should drastically
reduce the quantity of incoherent data all across the application because we are doing
the coherency checking right at where the data comes in.

38

Chapter 4

Data science

Privateaser is not yet big enough to employ full-time data scientists to make data-
driven decisions. It does however encourage developers to backup their assertions
with data. Moreover other parts of the company, particularly the marketing team, are
avid for data and for insights into how the customers are behaving.

During the internship I spent some time during the offsprint to put in place some
foundations for future data-driven work. I didn’t really get to any advanced data
analysis, I mostly got to organize the way in which would be analyzed when the time
would be right.

4.1 Creating a data science code base

It seemed quite obvious that whatever the way the data was analyzed it should be
done in a manner independent from the main application code base. Specifically it
should tap into the database and logged data. We settled upon using Python 3 for
manipulating the data. Python is growing popular inside data analysis communities
because of it’s wide range of data analysis tools.

Specifically I put in place a tool chain for parsing and running data analysis tech-
niques with the pandas library; it allow the manipulation of dataframes and can easily
connect to an SQL database to fetch required data.

The idea is that for each statistical analysis a single script can be associated to
it. The scripts can then be run by a cron job on a dedicated server. This is practical
because the statistical analysis that are required usually have a temporal dimension so
as to study progress.

Physically there is a separate code base versioned with git. The code base contains
a folder when scripts can be added. A main Python file runs each scripts and a cron
job calls the Python script on a nightly basis. The output of each script (usually an
Excel file or a chart) is a transferred towards a dedicated folder accessible via the
www.data-science.privateaser.com URL for IP addresses that arise from the Pri-
vateaser office space. This way non-developers can access fresh results on a daily
basis.

39

As of now some interns have been recruited to analyze data. They are currently get-
ting used to Python, but when they are ready they will use the data science repository
for their analysis so that other people can access their insights. This is a good solution
to avoid that their work gets forgotten just because they didn’t have any proper way of
putting their scripts into production.

4.2 Analyzing log files

As of the beginning of my internship, there is a huge desire to pin down the various bugs
all over the website. What’s more we would like to monitor the traffic and understand
what are the “peak hours”. Basically we would like to start logging events on the
website. This is something most applications require at some point in time. The earlier
the better.

4.2.1 Producing log files

The general idea is that we want to be able to monitor any event we want. We can
distinguish passive logging from active logging. The passive logging should monitor
most of the traffic on the website. It should tell who went where when and with what
device. The active logging will encompass less frequent events, such as when an event
is created or cancelled.

Python’s standard library offers a basic logging toolbox. It allows to log where
and when an event was logged, along with metadata such as how critical the event is
(information, error, warning, etc.). However it isn’t very flexible and it doesn’t “feel
right”. Logging events is good but it is useless to do it without considering how the logs
will be analyzed. Grepping through logs is a poor man’s way (and yet a popular one!). A
better way to analyze logs is to use dedicated platforms (SaaS or custom). In any case
the format of the files generated by the logging process is extremely important. A good
practice is to find a balance between both human and computer readability. For this a
solid practice seems to settle on JSON output. This way the logging format is universal
and logs ranging from simple to imbricated structure can easily be constructed.

After doing some research I found that a Python library called structlogdid exactly
what we wanted. Implementing a logger revealed itself easy. A nice feature we decided
to implement was to automatically log the date and time of log message along with
the logging level and more importantly a session ID and an IP address. Basically we
decided to store a random string into each user’s session (by using cookies). This
allows to track the users when he navigates through the website. This should allow us
the better understand why and how bugs occur when users with the website.

The code of the logger’s implementation isn’t very interesting. It’s more it’s use
and it’s application that are noteworthy. It’s been implemented in a way where logs
can be initialized and appended to with conditional logic, such as in the following
snippet. The advantage is that it avoids having to duplicate code in each if statement.
Of course this is simply a comfort feature but at least it encourages developers to write
logs, which can be perceived as quite a burden.

40

1 log = logger.new(event_id=event.id)
2

3 if alt.status == 'dropped':
4 log.info(u'Event dropped')
5

6 elif alt.event.status == 'missed':
7 log = log.bind(event_date=event.event_date_time)
8 log.info(u'Event missed')

Listing 13: Conditional logging

4.2.2 Creating log dashboards with Logmatic

Logmatic is a SaaS (Software as a Service) that allows to parse and analyze log files by
directly linking to a data source. In our case we set up a rotating file handler on our
Amazon instance and piped Python’s logs towards the file handler. Logmatic fetches the
logs in a near real-time manner. I took the time to compare similar tools to Logmatic
such as Loggly and Logentries but we agreed that Logmatic did the job, at least at our
scale. It being based on D3.js, it’s also visually appealing. Another solution we explored
was to use the popular ELK stack (Elastic Search - Logstack - Kibana) but it seemed
overkill and it required much more setup.

We want to help Logmatic gather insights for us. We want to be able to analyze and
logs and build useful charts and leaderboards to examine what is going wrong on the
website and to what extent. The following examples are a proof of a concept of what
is possible and they serve as encouragement for other developers to log events. As
can be seen Logmatic makes going through logs much more fun than running grep
commands in the shell.

Logmatic automatically extracts fields from lines in a log file if they are of a certain
format. For example JSON formatting is supported out of the box. We can then filter the
logs if they contain a certain field or if a field in question matches a regular expression.
Field filtering can then be filtered into metrics. For example each web request’s duration
time is logged for slow requests. The durations is logged as a floating point, the
associated metric is in milliseconds. The metric can then be aggregated into charts,
it can also be sliced and diced by comparing it against other metrics. Metrics can be
aggregated on a given period of time. The following charts were aggregated over 7
days during the month of May when we started using Logmatic.

41

Endpoint total duration

Figure 4.1: Endpoint total duration

This first chart aims to show where the slowest endpoints on the website. The end-
points are sorted by total duration during 7 days. The usage of each endpoint has
been split based on the type of usage. Slow endpoints are more critical for public
users (marked as ananymous) because a bad UX will result in lower conversion rates.
This dashboard helps us to the target the slowest parts of the website before doing
something about it. Of course we could compare two periods of time to measure how
our optimizations are doing.

The first route is not of importance because only the admin users are using it.
However, the second path is exclusively accessed by the public users. Luckily this
has greatly improved since thanks to the new search mechanism introduced earlier
in this report. We have also started logging the time spent performing SQL queries
to understand where the bottlenecks are coming from. Logmatic allows to combine
metrics, in this case we decided to compute the difference between the total duration
time and the time spent in the database to obtain a good approximation of the rendering
of each page.

42

Average event creation per hour

Figure 4.2: Event creations per hour

This chart shows the average number of event creations per hour of the day. This of
course was common knowledge but it felt good to back up our feelings with a chart.
Not surprisingly reservations are mostly done during the day and when people have
breaks. Indeed, users usually prepare some time before making a reservation because
it’s usually an important decision to make. This cascades onto the following chart with
shows the usage of the website per user type. As can be seen the website is mostly used
by the public users, which makes it even more important to cut down their waiting
time.

Figure 4.3: Usage per user type

43

Dashboard example

Figure 4.4: Usage dashboard

Logmatic allows to create dashboards where one can aggregate analysis that deal with
the same topic. This enables anyone to get a global view on the topic. This particular
example intends to show the usage of the website based on different metrics.

The top view shows the usage of the backoffice per user. It’s a bit intrusive but we
found it quite funny.

The bottom left chart is a Marimekko diagram that shows the activity on the website
split between the day of the week and the hour of the day. It’s interesting because it
shows that the usage isn’t similar between days, neither is it between hours.

44

4.3 Transactional mail frameworks comparison

Our life as developpers sometimes makes us have to decide between which li-
brary/framework to use for a particular task. Pure programming are often opensource,
thus the decision often depends on some qualitative attribute. However more business
oriented tools come with a cost.

Privateaser sends a lot of emails. When I arrived we were using Mandrill for sending
them. It’s robust and it handles the load. However, their payment plan changed and
we wanted to decide if it was worth changing frameworks based on the change. First
we identified potential replacements:

• Postmark

• Sendgrid

• Amazon

• Sparkpost

Each candidate had a pricing table on their website. I decided to make a chart that
compared the pricing of each framework to help us decide, at least regarding the cost.

Figure 4.5: Transactional email providers comparison

45

https://www.mandrill.com/pricing/
https://postmarkapp.com/pricing
https://sendgrid.com/pricing
https://aws.amazon.com/fr/ses/pricing/
https://www.sparkpost.com/pricing

Each and everyone of the frameworks functions with a breakpoint system. Past a
certain threshold the price per email is lower, or the price per n is lower. By translating
these pricing tables into functions that take as parameter a number of emails I was able
to produce the previous figure. In the end we decided to stick with Mandrill because
our current number of sent emails didn’t make it ridiculously more expensive than
other frameworks.

1 def postmark(n):
2 blocks = math.ceil(n / 1e3)
3 if n <= 5e5: return 1.5 * blocks
4 elif n <= 1e6: return 1 * blocks
5 elif n <= 2e6: return 0.75 * blocks
6 elif n <= 5e6: return 0.5 * blocks
7 else: return 0.25 * 5e2 + postmark(n - 5e6)
8

9 def sendgrid(n):
10 if n <= 1e5: return 79.95
11 elif n <= 3e5: return 199.95
12 elif n <= 7e5: return 399.95
13 else: return 399.95 + sendgrid(n - 7e5)
14

15 def amazon(n):
16 blocks = math.ceil(n / 1e3)
17 return 0.1 * blocks
18

19 def sparkpost(n):
20 if n <= 1e5: return 24.99
21 elif n <= 1e6: return 199.99
22 else: return 199.99 + 0.15 * (n - 1e6)
23

24 def mandrill(n):
25 blocks = math.ceil(n / 25e3)
26 if blocks <= 20: price = 20
27 elif blocks <= 40: price = 18
28 elif blocks <= 80: price = 16
29 elif blocks <= 120: price = 14
30 elif blocks <= 160: price = 12
31 else: price = 10
32 return price * blocks

Listing 14: Transactional email providers comparison

46

Conclusion

Privateaser was an important step for me. Although I haven’t been trained to a web
developer, I had already worked on a my spare time on web programs and this intern-
ship was a chance to challenge my knowledge and give me an opportunity to apply
to the real world. My previous internship had been more research oriented, with less
business impact. On the contrary, Privateaser offered me a chance to build towards a
product used by many users, with important ramifications regarding people’s lives.

I feel much more confident working with other people. I now have a better under-
standing of how to manage intermediary between the business necessities and the
code implementation. My knowledge of Agile principles has increased, I got the chance
to apply my knowledge in the domain in a real case.

My fellow developers helped me better myself as a programmer. I now have a good
conception of SOA applications, micro-services, coding conventions, git flows, peer
programming, code reviews, monitoring...

As a data scientist I didn’t really get the chance to do anything advanced but I helped
to build towards a culture of being data driven. I helped put in place the foundations of
our data science tools and I understood how useful data analysis regarding business
prospects.

All in all Privateaser was a great experience, I got to meet wonderful people who
were a bit older and with whom I had a great time. I would definitely re-iterate the
experience of working for a startup.

47

Appendices

48

Appendix A

The tools

Python

It’s worth mentioning the tools that are and will be used
during the internship. Indeed, these deeply affect the work-
flow and the way code integration is done. By tools I mean
programming languages, software and APIs. The bulk of
the code is written in Python, of which the flexibility cannot
be overstated. One of the major benefits of Python is that
it easily set up and very readable, simplifying integration
and code sharing. A plethora of libraries and drivers have
been written in Python to perform data science, deploy
website, provide layers to databases... Privateaser’s appli-
cations are powered by the Flask web framework, which
incorporates most tools for building a modern website (parametrized URL routing,
HTML templates, caching, redirecting etc.).

Flask

Regarding the frontend, we tend to use Vue.js. It is
proven excellent for the back-office where many actions
are triggered based on user actions, for example when
new events or SMSs are refreshed. Vue.js is very much like
React.js, it encourages to build with a component design.
Every component is responsible for a part of the inter-
face. Components can be composed so as to build complex
structures. Vue.js emphasizes reactive design, where the
UI changes in real time based on user actions. Vue.js also
encourages to think of the interface as a pure result of the
data. Little by little we are replacing legacy jQuery code

with Vue.js. It’s much more developer friendly also. Indeed, the HTML, JavaScript and
CSS can all be included in a single where the full use of conditional logic can be used to
modify the UI. Before frameworks such as Vue.js and React.js, developers tended to
target their HTML divs with jQuery. This is fine but spaghetti code is naturally formed
because there is no clear link between the HTML and the JavaScript. The HTML doesn’t
know it’s being target by a JavaScript directive until it is, which makes it hard to grasp
by a new developer.

49

https://www.python.org/
http://flask.pocoo.org/

Vue.js

For managing the frontend assets we used Webpack for
the JavaScript and Grunt for the CSS. These tools compile
ES6 and LESS code into plain JavaScript and CSS, respec-
tively. Nowadays it’s not very common for developers to
code directly in JavaScript and CSS simply because they are
too simple. LESS enables class inheritance, mixins, vari-
ables and conditional logic which makes it extremely more
viable than pure CSS. ES6 on the other is a more functional
approach for writing JavaScript, it makes it much more
fun.

Grunt

As for our developer tools we are using Bitbucket for
versioning, Asana for managing our tasks and Slack for
communicating. Recently we have had a revamp of how
we are managing features and we might switch Asana out
and replace it with Trello or some other Kanban system.
These tools are state-of-the-art, especially Slack which is
atsounding for communicating. Personally I have a pref-
erence for GitHub because of the UI but Bitbucket does an
OK job for doing code reviews.

Webpack Bitbucket Slack

50

https://vuejs.org/
http://gruntjs.com/
https://webpack.github.io/
https://bitbucket.org/privateaser/
https://slack.com/

	Introduction
	The company
	The organization
	The objective
	The workflow

	Application architecture
	Goals
	Phase 1
	Phase 2
	Detailed view

	Features
	Daily routine
	Establishment search refactoring
	Current status
	Goal
	Architecture
	User interaction
	Search Engine Optimization
	Layout
	Implementation
	Testing
	Results

	Lazy store
	Validating payloads

	Data science
	Creating a data science code base
	Analyzing log files
	Producing log files
	Creating log dashboards with Logmatic

	Transactional mail frameworks comparison

	Appendices
	The tools

