
Machine learning
for query selectivity estimation

in relational databases
PhD defence

Max Halford12

Philippe Saint-Pierre1 Franck Morvan2

1Toulouse Institute of Mathematics (IMT)

2Toulouse Institute of Informatics Research (IRIT)

October 12, 2020

1

Outline

Motivation

State of the art

Selectivity estimation with Bayesian networks
Independent Bayesian networks
Linked Bayesian networks

Correcting selectivities with machine learning

Conclusion

2

Motivation

3

A relation

4

Normalisation

5

Queries

How many blond Swedes bought meatballs from Ikea?

SELECT COUNT(*)

-- Relations
FROM customers, shops, items, purchases

-- Joins
WHERE purchases.customer = customers.id
AND purchases.shop = shops.id
AND purchases.item = items.id

-- Filters
AND customers.nationality = 'Swedish'
AND customers.hair = 'Blond'
AND items.name = 'Meatballs'
AND shops.name = 'Ikea'

6

Query optimisation

1. A user issues an SQL query
2. Each query can be answered with many different query

execution plans
3. The query optimiser searches for the fastest execution plan
4. The best plan is executed, the results are returned to the user
5. Difficulty: the exact cost of each plan is unknown before

executing it

7

Join order matters (1)

8

Join order matters (2)

9

Cost-based query optimisation

Query optimisation time is part of the query response time!

10

Cost model

I Cost of operator mostly depends on number of tuples to
process, called the selectivity

I Selectivity is extremely difficult to estimate [WCZ+13]
I Errors propagate exponentially [IC91]
I Seminal (simple) ideas from [SAC+79] are still very much in

use 1

1https://www.postgresql.org/docs/13/planner-stats.html
11

https://www.postgresql.org/docs/13/planner-stats.html

Selectivity estimation

I How many customers?
I How many Swedish customers?
I How many purchases from Ikea?
I How many purchases from Ikea for meatballs?
I How many Swedish bought meatballs from Ikea?

The goal of this PhD is to propose efficient methods that can
answer these kind of queries.

Selectivity estimation is difficult because of dependencies, even
more so when they scattered across relations.

12

Assumptions

1. Attribute value independence (AVI): attributes are
independent with each other

2. Join uniformity: attribute distributions do not change after
joins

3. Join predicate independence: join selectivities can be
computed independently

In practice, all these assumptions go out the window.
The goal is to relax them.

13

State of the art

14

Dummy strategies

1. Scan the data on the fly: takes too long
2. Memorise all possible combinations: takes too much space

A compromise between time and space has to be made

15

Existing approaches

1. Sampling
2. Supervised learning
3. Unsupervised learning

16

Sampling

I Idea: estimate a selectivity by running a query on a sample of
the relations

I The sample can be constructed:
1. online: expensive because of on the fly disk access, but

accurate
2. offline: can be done during downtime, but needs to be

refreshed
I Different methods:

I Single relation [PSC84, LN90] (works well but has a high
inference cost)

I Multiple relations [Olk93, VMZC15, ZCL+18] (empty-join
problem)

17

Supervised learning

I Idea: frame selectivity estimation as a supervised learning
problem:
1. Features: queries issued by users
2. Targets: the selectivity of each query
3. Goal: minimise some metric

I Different methods:
I Query feedback memorisation [SLMK01] (useless for unseen

queries)
I “Classical” machine learning [CR94, AÇR+12, LXY+15]
I Deep learning [KKR+18, DWN+19, WXQ+20]

I Little to no work takes into account concept drift and cold
start issues

18

Unsupervised learning

I Idea: build a statistical synopsis of the database to perform
density estimation

I The goal is to capture as much information as possible
I Domain closure: the data we have is not part of some larger

sample
I Different methods:

I Unidimensional [IC93, TCS13, HKM15] (textbook approach)
I Multidimensional [GKTD05, Aug17] (exponential number of

combinations)
I Bayesian networks [GTK01, TDJ11] (complex compilation

procedure and high inference cost)

19

The accuracy vs. complexity trade-off

20

Selectivity estimation with Bayesian networks

21

A statistical point of view

I A relation is made of p attributes X1, . . . , Xp

I Each attribute Xi follows an unknown distribution P (Xi)

I P (Xi = x) gives us the probability of a predicate (e.g. name =
‘Ikea’)

I P (Xi) can be estimated, for example with a histogram
I The distribution P (Xi, Xj) captures interactions between Xi

and Xj (e.g. name = ‘Ikea’ AND nationality =
‘Swedish’)

I Memorising P (X1, . . . , Xp) takes
∏p

0 |Xi| units of space

22

Independence

I Assume X1, . . . , Xp are independent with each other
I We thus have P (X1, . . . , Xp) =

∏p
0 P (Xi)

I Memorising P (X1, . . . , Xp) now takes
∑p

0 |Xi| units of space
I We’ve compromised between accuracy and space
I In query optimisation this is called the attribute value
independence (AVI) assumption

23

Conditional independence

I Bayes’ theorem: P (A,B) = P (B | A)× P (A)

I Example: P (hair, country) = P (hair | country)P (country)

I A are B are conditionally independent if C determines them
I In that case P (A,B,C) = P (A | C)P (B | C)P (C)

I |P (A | C)|+ |P (B | C)|+ |P (C)| < |P (A,B,C)|
I Conditional independence can save space without

compromising on accuracy!

24

Example
nationality hair salary
Swedish Blond 42000
Swedish Blond 38000
Swedish Blond 43000
Swedish Brown 37000
American Brown 35000
American Brown 32000

I Truth: P (Swedish,Blond) = 3
6 = 0.5

I With independence:
I P (Swedish) = 4

6
I P (Blond) = 3

6
I P (Swedish,Blond) ' P (Swedish)× P (Blond) = 2

6 = 0.333

I With conditional independence:
I P (Blond | Swedish) = 3

4
I P (Swedish,Blond) = P (Blond | Swedish)× P (Swedish) =

3×4
4×6 = 0.5

25

Bayesian networks

I Assuming full independence isn’t accurate enough
I Memorising all value combinations takes too much space
I Pragmatism: some variables are independent, some aren’t
I Bayes’ theorem + pragmatism = Bayesian networks
I Conditional independences are organised in a graph
I Each node is a variable and is dependent with its parents

26

Example

N

H S

Blond Brown
American 0 1
Swedish 0.75 0.25

Table: P (hair | nationality)

American Swedish
0.333 0.666

Table: P (nationality)

< 40k > 40k
American 1 0
Swedish 0.5 0.5

Table: P (salary | nationality)

27

Structure learning

I In a tree, each node has 1 parent, benefits:
I 2D conditional distributions (1D for the root)
I Low memory footprint
I Low inference time

I Use of Chow-Liu trees [CL68]
1. Compute mutual information (MI) between each pair of

attributes
2. Let the MI values define fully connected graph G
3. Find the maximum spanning tree (MST) of G
4. Orient the MST (i.e. pick a root) to obtain a directed graph

28

Selectivity estimation
I Use of variable elimination [CDLS06]
I Works in O(n) time for trees [RS86]
I Steiner tree [HRW92] extraction to speed up the process

G

S N

H P

Figure: Highlighted Steiner tree containing nodes G, S, N, and H needed
to compute H’s marginal distribution

29

The stepping stone

I We managed to soften the AVI assumption within a relation
[HSPM19]

I The next step is to take into account dependencies across
different relations [HSPM20]

30

Bad assumptions

I Up to now, we assumed PC(Swedish) = PC./P (Swedish)
(join uniformity assumption)

I We also assumed
PC./P./S(Swedish, Ikea) = PC(Swedish)× PS(Ikea) (AVI
assumption)

I Both of these assumptions are wrong in practice

31

Dependency preservation assumption

I Example factorisation: PC(A,B) = PC(A | B)PC(B)

I Assumption: attribute dependencies are preserved after joins
I Example: PC./P (A,B) = PC(A | B)PC./P (B)

I We don’t need to know PC./P (A | B)!

32

Illustration

I I know how many customers are Swedish and blond
I I know how many Swedes made purchases
I I assume that all Swedes are as likely to make purchases
I Consequently, I know many blond Swedes made purchases

This is much softer than the join uniformity assumption

33

Example without the assumption
Shop Customer
1 1
2 1
3 1
4 1
5 2
6 3
7 5

Table: Purchases

Customer Nationality Hair
1 Swedish Blond
2 Swedish Blond
3 Swedish Brown
4 American Blond
5 American Brown

Table: Customers

I PC./P (Blond, Swedish) = 5
7

I PC(Swedish) =
3
5

I PC(Blond | Swedish) = 2
3

I P̂C./P (Blond, Swedish) ' 2
3 ×

3
5 = 2

5 (44% underestimate)

34

Example with the assumption
Shop Customer
1 1
2 1
3 1
4 1
5 2
6 3
7 5

Table: Purchases

Customer Nationality Hair
1 Swedish Blond
2 Swedish Blond
3 Swedish Brown
4 American Blond
5 American Brown

Table: Customers

I PC./P (Blond, Swedish) = 5
7

I PC./P (Swedish) =
6
7

I PC(Blond | Swedish) = 2
3

I P̂C./P (Blond, Swedish) ' 2
3 ×

6
7 = 4

7 (20% underestimate)

35

Independent Bayesian networks

Day of weekNationality

Hair Salary

Name

City Size

Figure: Separate Bayesian networks of customers, shops, and purchases

36

Linked Bayesian network

Nationality

Day of week
NameNationality

Hair Salary
Name

City Size

Figure: Linked Bayesian network of customers, shops, and purchases

37

"Unrolled" linked Bayesian network

Nationality

HairSalary Day of week Name

City Size

Figure: Unrolled version of the linked Bayesian network of customers,
shops, and purchases

38

Including more attributes

Nationality

Salary Day of weekNationality

Hair Salary

Figure: Linked Bayesian network of customers and purchases

39

Benefits of linked Bayesian networks

1. Only one attribute of each relation has to be included
2. New distributions are obtained for free because of the attribute

dependency preservation assumption
3. By trying to relax the join uniformity assumption, we also

relaxed the attribute value independence assumption across
relations!

4. The same inference algorithm used for a single Bayesian
network can be used on the unrolled version of a linked
Bayesian network

40

Experimental setup – environment

I Measure accuracy using q-error [LRG+18]:

q(y, ŷ) =
max(y, ŷ)

min(y, ŷ)

I Measure inference speed
I Measure compilation time and storage requirements
I Use 5,122,790 queries derived from the Join Order Benchmark

[LGM+15]

41

Experimental setup – compared methods

We benchmarked the following methods:
1. PostgreSQL
2. Random sampling [OR86]
3. Correlated sampling [VMZC15]
4. MSCN (deep learning) [KVM+19]
5. Global Bayesian network [TDJ11]
6. Independent Bayesian networks [HSPM19] (us)
7. Linked Bayesian with k = 1 (us)
8. Linked Bayesian with k = 2 (us)

42

Figure: Sorted q-errors for all queries by method

1 1M 2M 3M 4M 5M

Number of queries

100

101

102

103

q-
er

ro
rs

Sorted q-errors by method

PostgreSQL

Random sampling

Correlated sampling

MSCN

Global Bayesian network

Independent Bayesian networks

Linked Bayesian network with k = 1

Linked Bayesian network with k = 2

43

Table: q-error statistics for each method

median 95th 99th max average
PostgreSQL 7.32 185.84 707.21 10906.17 77.01
Sampling 4.79 33.17 81.34 1018.43 12.71

Correlated sampling 3.83 12.63 22.72 214.1 5.79
MSCN 2.99 7.47 12.49 110.56 3.89

Global BN 1.95 3.22 4.01 7.45 1.99
Independent BN 4.0 32.9 76.91 820.46 11.82
Linked BN k = 1 2.41 6.15 8.07 21.09 2.79
Linked BN k = 2 2.13 4.26 5.23 12.6 2.3

44

Table: Average inference time in milliseconds for each method with
respect to the number of joins

No joins 1 join 2 to 5 joins 6 joins or more
PostgreSQL 2.3 2.6 3.6 8.4
Sampling 19.6 36.2 120.2 268.4

Correlated sampling 20.4 155.7 280.6 493.4
MSCN 135.9 312.2 343.3 387.6

Global BN 84.3 116.1 145.8 236.1
Independent BN 8.3 10.9 12.6 12.1
Linked BN k = 1 9.5 12.8 14.1 15.2
Linked BN k = 2 10.1 12.9 14.3 16.4

45

Table: Computational requirements of the compilation phase per method

Construction time Storage size
PostgreSQL 5s 12KB
Sampling 7s 276MB

Correlated sampling 32s 293MB
MSCN 15m8s 37MB

Global BN 24m45s 429KB
Independent BN 55s 217KB
Linked BN k = 1 2m3s 322KB
Linked BN k = 2 2m8s 464KB

46

Correcting selectivities with machine learning

47

Recap

I Bayesian networks are a good candidate to replace histograms
I However, a lot of query optimisers are reluctant to modify

their cost model
I Can we improve an existing cost model by learning from its

mistakes?

48

Idea

I Assume we have a cost model
I The true costs are denoted yi

I The estimated costs are denoted ŷi

I The average relative error is e = 1
n

∑n
i=1

ŷi
yi

I If e > 1, the model is overestimating
I If e < 1, the model is underestimating
I We can divide each ŷi by e to correct the model
I Naturally, we don’t know e before a workload occurs, but we

can estimate it online
I Used in Microsoft SQL server [LKN+16]

49

Baby steps

I Assumption: the model’s error depends on the complexity of
the query

I Example: relative errors might be correlated with the number
of joins

I We can calculate the errors ek for each number of joins k
I When an estimate for a query is made, correct the estimate by

dividing the estimate by the appropriate ek

50

A statistical learning perspective

I We can take this further, and correlate the error with features,
denoted xi, derived from each query

I Goal: learn to predict the error from xi

I Approach: use error feedback to update a statistical
I In other words, we can use machine learning to (try to)

correlate query properties with relative errors

51

Supervised learning in a nutshell

I Supervised learning is a subset of machine learning
I Typically, we have a n× p matrix of n observations and p

features, denoted X

I We also have a vector of n target values, denoted y

I The goal is to learn a model m which maps X to f

I Ideally, m should generalise and not memorise

52

Recent endeavours

I Many recent proposals:
I Gradient boosting [DWNC]
I Random forests [IB17]
I Deep learning [KKR+18]
I More deep learning [WJA+18]
I Even more deep learning [WHT+19]
I Traditional linear models [DWN+19]

I All of these proposals use a batch approach
I Batch models need to be retrained when new data arrives
I Queries are, by nature, endlessly streaming in
I Data distribution and queries typologies change through time

(concept drift)
I Batch models are therefore sub-optimal
I Also, batch models are too cumbersome [HSK+19]

53

The benefits of online machine learning

I An online model is able to learn with one sample at a time
I Online learning is a better fit than batch learning for the

purpose of selectivity estimation:
1. An online paradigm doesn’t require to store historical data
2. An online model is always up-to-date
3. An online model can cope with concept drift

54

Target encoding

I The idea of LEO [SLMK01] is to memorise past selectivities of
sub-QEPs

I We can do the same in spirit, by memorising the error with
respect to:
1. relations
2. attributes
3. joins
4. attribute values
5. number of operators

I In data science, this is called target encoding
I Might overfit when groups are too small

55

Factorisation machines (FM)

FMs supersede linear models:

ŷ = w0 +

p∑
i=1

wixi +

p∑
i=1

p∑
j=i+1

〈vi, vj〉xixj (1)

where 〈·, ·〉 is the dot product:

〈vi, vj〉 =
k∑

f=1

vi,f × vj,f (2)

This model parameter are thus:

w0 ∈ R wi ∈ Rp wif ∈ Rp×k (3)

56

Experimental results

I We simulate a stream of queries
I Soft and hard drift are inserted to check for robustness
I We benchmark batch models:

I Linear regression
I LightGBM [KMF+17]
I MSCN [KVM+19]
I PostgreSQL’s cost model

I As well as online models:
I Linear regression
I Bayesian linear regression
I Multi-layer perceptron
I Factorization machines [Ren10]
I Hoeffding trees [DH00]

57

Figure: q-errors for each method with hard concept drift

0 100000 200000 300000 400000 500000 600000

Number of processed queries

5

10

15

20

25

30

q-
er

ro
r

Average q-error per model with hard drift

Batch linear regression

Bayesian linear regression

FM

Hoeffding tree

LightGBM

MSCN

Neural network

Online linear regression

PostgreSQL

58

Figure: q-errors for each method with soft concept drift

0 100000 200000 300000 400000 500000 600000

Number of processed queries

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0
q-

er
ro

r
Average q-error per model with hard drift

Batch linear regression

Bayesian linear regression

FM

Hoeffding tree

LightGBM

MSCN

Neural network

Online linear regression

PostgreSQL

59

Conclusion

60

Conclusion

I Selectivity estimation is the backbone of query optimisation
I Computational performance is paramount, and thus dictates

what we’re allowed to consider
I Bayesian networks simplify the assumptions we presented

above, without requiring too much computational resources
I Likewise, our online learning proposal focuses on simplicity

61

Offering a better compromise

62

Perspectives

1. Robust query optimisation
2. Extend to other applications:

I Workload forecasting
I Resource allocation
I Approximate query answering

3. Implement in an actual query optimiser
4. Produce more benchmarks

63

64

References I

Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal,
and Stanley B Zdonik.
Learning-based query performance modeling and prediction.
In 2012 IEEE 28th International Conference on Data
Engineering, pages 390–401. IEEE, 2012.

Dariusz Rafal Augustyn.
Copula-based module for selectivity estimation of
multidimensional range queries.
In International Conference on Man–Machine Interactions,
pages 569–580. Springer, 2017.

Robert G Cowell, Philip Dawid, Steffen L Lauritzen, and
David J Spiegelhalter.
Probabilistic networks and expert systems: Exact
computational methods for Bayesian networks.
Springer Science & Business Media, 2006.

65

References II

C Chow and Cong Liu.
Approximating discrete probability distributions with
dependence trees.
IEEE transactions on Information Theory, 14(3):462–467, 1968.

Chungmin Melvin Chen and Nick Roussopoulos.
Adaptive selectivity estimation using query feedback.
In Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, pages 161–172, 1994.

Pedro Domingos and Geoff Hulten.
Mining high-speed data streams.
In Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
71–80, 2000.

66

References III

Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula,
Vivek Narasayya, and Surajit Chaudhuri.
Selectivity estimation for range predicates using lightweight
models.
Proceedings of the VLDB Endowment, 12(9):1044–1057, 2019.

Anshuman Dutt, Chi Wang, Vivek Narasayya, and Surajit
Chaudhuri.
Efficiently approximating selectivity functions using low
overhead regression models.
Proceedings of the VLDB Endowment, 13(11).

67

References IV

Dimitrios Gunopulos, George Kollios, J Tsotras, and Carlotta
Domeniconi.
Selectivity estimators for multidimensional range queries over
real attributes.
The VLDB Journal—The International Journal on Very Large
Data Bases, 14(2):137–154, 2005.

Lise Getoor, Benjamin Taskar, and Daphne Koller.
Selectivity estimation using probabilistic models.
In ACM SIGMOD Record, volume 30, pages 461–472. ACM,
2001.

68

References V

Max Heimel, Martin Kiefer, and Volker Markl.
Self-tuning, gpu-accelerated kernel density models for
multidimensional selectivity estimation.
In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1477–1492. ACM,
2015.

Frank K Hwang, Dana S Richards, and Pawel Winter.
The Steiner tree problem, volume 53.
Elsevier, 1992.

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa,
Alejandro Molina, Kristian Kersting, and Carsten Binnig.
Deepdb: learn from data, not from queries!
arXiv preprint arXiv:1909.00607, 2019.

69

References VI

Max Halford, Philippe Saint-Pierre, and Franck Morvan.
An approach based on bayesian networks for query selectivity
estimation.
In International Conference on Database Systems for Advanced
Applications, pages 3–19. Springer, 2019.

Max Halford, Philippe Saint-Pierre, and Franck Morvan.
Selectivity estimation with attribute value dependencies using
linked bayesian networks.
arXiv preprint arXiv:2009.09883, 2020.

Oleg Ivanov and Sergey Bartunov.
Adaptive cardinality estimation, 2017.

Yannis E Ioannidis and Stavros Christodoulakis.
On the propagation of errors in the size of join results,
volume 20.
ACM, 1991.

70

References VII

Yannis E Ioannidis and Stavros Christodoulakis.
Optimal histograms for limiting worst-case error propagation in
the size of join results.
ACM Transactions on Database Systems (TODS),
18(4):709–748, 1993.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis,
Peter Boncz, and Alfons Kemper.
Learned cardinalities: Estimating correlated joins with deep
learning.
arXiv preprint arXiv:1809.00677, 2018.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen,
Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree.
In Advances in Neural Information Processing Systems, pages
3146–3154, 2017.

71

References VIII

Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf,
Bernhard Radke, Viktor Leis, Peter Boncz, Thomas Neumann,
and Alfons Kemper.
Estimating cardinalities with deep sketches.
In Proceedings of the 2019 International Conference on
Management of Data, pages 1937–1940, 2019.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz,
Alfons Kemper, and Thomas Neumann.
How good are query optimizers, really?
Proceedings of the VLDB Endowment, 9(3):204–215, 2015.

72

References IX

Kukjin Lee, Arnd Christian König, Vivek Narasayya, Bolin
Ding, Surajit Chaudhuri, Brent Ellwein, Alexey Eksarevskiy,
Manbeen Kohli, Jacob Wyant, Praneeta Prakash, et al.
Operator and query progress estimation in microsoft sql server
live query statistics.
In Proceedings of the 2016 International Conference on
Management of Data, pages 1753–1764, 2016.

Richard J Lipton and Jeffrey F Naughton.
Query size estimation by adaptive sampling.
In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 40–46.
ACM, 1990.

73

References X

Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas
Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.
Query optimization through the looking glass, and what we
found running the join order benchmark.
The VLDB Journal, pages 1–26, 2018.

Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and
Calisto Zuzarte.
Cardinality estimation using neural networks.
In Proceedings of the 25th Annual International Conference on
Computer Science and Software Engineering, pages 53–59.
IBM Corp., 2015.

Frank Olken.
Random sampling from databases.
PhD thesis, University of California, Berkeley, 1993.

74

References XI

Frank Olken and Doron Rotem.
Simple random sampling from relational databases.
1986.

Gregory Piatetsky-Shapiro and Charles Connell.
Accurate estimation of the number of tuples satisfying a
condition.
ACM Sigmod Record, 14(2):256–276, 1984.

Steffen Rendle.
Factorization machines.
In 2010 IEEE International Conference on Data Mining, pages
995–1000. IEEE, 2010.

Neil Robertson and Paul D. Seymour.
Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

75

References XII

P Griffiths Selinger, Morton M Astrahan, Donald D
Chamberlin, Raymond A Lorie, and Thomas G Price.
Access path selection in a relational database management
system.
In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pages 23–34, 1979.

Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar
Kandil.
Leo-db2’s learning optimizer.
In VLDB, volume 1, pages 19–28, 2001.

Hien To, Kuorong Chiang, and Cyrus Shahabi.
Entropy-based histograms for selectivity estimation.
In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, pages 1939–1948.
ACM, 2013.

76

References XIII

Kostas Tzoumas, Amol Deshpande, and Christian S Jensen.
Lightweight graphical models for selectivity estimation without
independence assumptions.
Proceedings of the VLDB Endowment, 4(11):852–863, 2011.

David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and
Sunil P Chakkappen.
Join size estimation subject to filter conditions.
Proceedings of the VLDB Endowment, 8(12):1530–1541, 2015.

Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura,
Hakan Hacigümüs, and Jeffrey F Naughton.
Predicting query execution time: Are optimizer cost models
really unusable?
In Data Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 1081–1092. IEEE, 2013.

77

References XIV

Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk
Habich, and Wolfgang Lehner.
Cardinality estimation with local deep learning models.
In Proceedings of the Second International Workshop on
Exploiting Artificial Intelligence Techniques for Data
Management, page 5. ACM, 2019.

Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel,
Wangchao Le, Shi Qiao, and Sriram Rao.
Towards a learning optimizer for shared clouds.
Proceedings of the VLDB Endowment, 12(3):210–222, 2018.

78

References XV

Yaoshu Wang, Chuan Xiao, Jianbin Qin, Xin Cao, Yifang Sun,
Wei Wang, and Makoto Onizuka.
Monotonic cardinality estimation of similarity selection: A deep
learning approach.
In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1197–1212, 2020.

Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and
Ke Yi.
Random sampling over joins revisited.
2018.

79

	Motivation
	State of the art
	Selectivity estimation with Bayesian networks
	Independent Bayesian networks
	Linked Bayesian networks

	Correcting selectivities with machine learning
	Conclusion

