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Introduction
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Query optimisation

Assuming a typical relational database,

1. A user issues an SQL query
2. The query is compiled into a execution plan by a query

optimiser
3. The plan is executed and the resulting rows are returned to the

user
4. Goal: find the most efficient query execution plan
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Cost-based query optimisation

Query optimisation time is part of the query response time!
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Selectivity estimation

I An execution plan is a succession of operators (joins,
aggregations, etc.)

I Cost of operator depends on number of tuples to process,
which called the selectivity

I Selectivity is by far the most important parameter, but also the
most difficult to estimate [WCZ+13]

I Errors propagate exponentially [IC91]
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Example

SELECT *
FROM customers, shops, purchases
WHERE customers.id = purchases.customer_id
AND shops.id = purchases.shop_id
AND customers.nationality = 'Swedish'
AND customers.hair = 'Blond'
AND shops.city = 'Stockholm'

I Pushing down the selections is usually a good idea, so the best
QEP should start by filtering the customers and the shops

I At some point the optimiser has to pick a join algorithm to
join customers and shops

I How many Swedish blond customers are there? How about the
number of shops in Stockholm?
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Related work

I Statistics
I Unidimensional [IC93, TCS13, HKM15] (textbook approach)
I Multidimensional [GKTD05, Aug17] (exponential number of

combinations)
I Bayesian networks [GTK01, TDJ11] (complex compilation

procedure and high inference cost)
I Sampling

I Single relation [PSC84, LN90] (works well but has a high
inference cost)

I Multiple relations [Olk93, VMZC15, ZCL+18] (empty-join
problem)

I Learning
I Query feedback [SLMK01] (useless for unseen queries)
I Supervised learning [LXY+15, KKR+18] (not appropriate in

high speed environments)
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Bayesian networks
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A statistical point of view

I A relation is made of p attributes X1, . . . , Xp

I Each attribute Xi follows an unknown distribution P (Xi)

I Think of P (Xi) has a function/table which can tell us the
probability of a predicate (e.g. hair IS ’Blond’)

I P (Xi) can be estimated, for example with a histogram
I The distribution P (Xi, Xj) captures interactions between Xi

and Xj (e.g. hair IS ’Blond’ AND nationality IS
’Swedish’)

I Memorising P (X1, . . . , Xp) takes
∏p

0 |Xi| units of space
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Independence

I Assume X1, . . . , Xp are independent with each other
I We thus have P (X1, . . . , Xp) =

∏p
0 P (Xi)

I Memorising P (X1, . . . , Xp) now takes
∑p

0 |Xi| units of space
I We’ve compromised between accuracy and space
I In query optimisation this is called the attribute value

independence (AVI) assumption
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Conditional independence

I Bayes’ theorem: P (A,B) = P (B|A)× P (A)

I A are B are conditionally independent if C determines them
I In that case P (A,B,C) = P (A|C)× P (B|C)× P (C)

I |P (A|C)|+ |P (B|C)|+ |P (C)| < |P (A,B,C)|
I Conditional independence can save space without

compromising on accuracy!
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Example
nationality hair salary
Swedish Blond 42000
Swedish Blond 38000
Swedish Blond 43000
Swedish Brown 37000
American Brown 35000
American Brown 32000

I Truth: P (Swedish,Blond) = 3
6 = 0.5

I With independence:
I P (Swedish) = 4

6
I P (Blond) = 3

6
I P (Swedish,Blond) ' P (Swedish)× P (Blond) = 2

6 = 0.333

I With conditional independence:
I P (Blond |Swedish) = 3

4
I P (Swedish,Blond) = P (Blond |Swedish)× P (Swedish) =

3×4
4×6 = 0.5
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Bayesian networks

I Assuming full independence isn’t accurate enough
I Memorising all the possible value interactions takes too much

space
I Pragmatism: some variables are independent, some aren’t
I Bayes’ theorem + pragmatism = Bayesian networks
I Conditional independences are organised in a graph
I Each node is a variable and is dependent with it’s parents
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Example

N

H S

Blond Brown
American 0 1
Swedish 0.75 0.25

Table: P (hair |nationality)

American Swedish
0.333 0.666

Table: P (nationality)

< 40k > 40k
American 1 0
Swedish 0.5 0.5

Table: P (salary |nationality)
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Structure learning

I In a tree, each node has 1 parent, benefits:
I 2D conditional distributions (1D for the root)
I Low memory footprint
I Low inference time

I Use of Chow-Liu trees [CL68]
1. Compute mutual information (MI) between each pair of

attributes
2. Let the MI values define fully connected graph G
3. Find the maximum spanning tree (MST) of G
4. Orient the MST (i.e. pick a root) to obtain a directed graph
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Selectivity estimation
I Use of variable elimination [CDLS06]
I Works in O(n) time for trees [RS86]
I Steiner tree [HRW92] extraction to speed up the process

G

S N

H P

Figure: Highlighted Steiner tree containing nodes G, N, and H needed to
compute H’s marginal distribution
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Experimental results
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Setup

I We ran 8 queries from the TPC-DS benchmark with a scale of
20 over samples of the database 10000 times

I We compared
I The “textbook approach” used by PostgreSQL
I Bernoulli sampling
I Bayesian networks (our method)

I All methods used the same samples
I We measured

I Time needed to build the model
I Accuracy of the cardinality estimates
I Time needed to produce estimates
I Values needed to store each model
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Construction time
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Textbook Bernoulli sampling Bayesian networks

The Bayesian networks method, with a 10% sample size, requires
on average a construction time of around 800 seconds.
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Selectivity estimation accuracy
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Textbook Bernoulli sampling Bayesian networks

The Bayesian networks method, with a 10% sample size, produces
estimates that are on average 10 times lower/higher than the truth.
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Cardinality estimation time
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Textbook Bernoulli sampling Bayesian networks

The Bayesian networks method, with a 10% sample size, takes on
average 35 milliseconds to produce an estimate.
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Conclusion

I Sampling is the fastest to build
I The textbook approach is the quickest to produce estimates
I Bayesian networks are the most accurate

As expected, no free lunch! But a better compromise.
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Thank you!
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