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Our team

Max Halford, 3rd year PhD student at IMT/IRIT
Raphaël Sourty, 1st year PhD student at IRIT
Robin Vaysse, 1st year PhD student at IRIT

We like competitive data science!
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Context

Satellite position forecasting
Two tracks with separate leaderboards:
1. Make the most accurate predictions possible
2. Make accurate predictions with two constraints:

2.1 Take less than 60 seconds
2.2 Keep peak RAM usage under 500MB
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The data
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Our solution in a nutshell

We train one model per satellite and per coordinate (300× 6 = 1800 models)
Each model is an autoregressive (AR) process of order p = 48

In other words, we train a linear regression to predict yn+1 from
{yn−48, . . . , yn}, that’s all!
To predict several steps ahead, we use the prediction at step n+ 1 as a
feature at step n+ 2

We validate locally on the last 40% of the data
Our approach is simple enough to be used for both tracks without
modifications
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Starting simple

https://github.com/onnx/sklearn-onnxOur solution to the IDAO 2020 qualifiers Max Halford, Raphaël Sourty, Robin Vaysse 6 / 14



Auto-regression
Using past target values makes sense because the data is very periodic
For every satellite and coordinate, we build a vector of features
Each vector contains the p past target values
We obtain n feature vectors and n targets
For forecasting into the future, we:
1. Make a prediction for the next time step
2. Append the prediction to the feature vector
3. Remove the oldest value from the vector
4. Repeat from step 1.

Flexible framework:
• Any regression model can be plugged in
• Any feature can be added, provided it can be computed online
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Dealing with speed

AR models are slow at inference because of their sequential nature
In scikit-learn, calling .predict(X) many times incurs a large overhead
We “stripped” the scikit-learn classes we used to their bare minimum by
overriding some of their methods
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Overriding scikit-learn’s linear regression
class StandardScaler(preprocessing.StandardScaler):

"""Barebones implementation with less overhead than sklearn."""

def transform(self, X):
return (X - self.mean_) / self.var_ ** .5

class LinearRegression(linear_model.LinearRegression):
"""Barebones implementation with less overhead than sklearn."""

def predict(self, X):
return np.dot(X, self.coef_) + self.intercept_

More information here. We’ve also learned about sklearn-onnx.
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https://maxhalford.github.io/blog/speeding-up-sklearn-single-predictions/
https://github.com/onnx/sklearn-onnx sklearn-onnx


Dealing with memory usage
We used a Python package called memory_profiler to measure the memory

usage of our script.
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https://github.com/pythonprofilers/memory_profiler


What didn’t work

Gaussian processes with sinusoidal kernels gave good training results, but
fared poorly on the test set
The N-BEATS1 model fits perfectly to the training data but diverges in
auto-regressive mode
We got no improvement by training a multi-output linear regression to try
capturing coordinate dependencies

1Boris N. Oreshkin et al. “N-BEATS: Neural basis expansion analysis for interpretable time series
forecasting”. In: CoRR abs/1905.10437 (2019). arXiv: 1905.10437. url:
http://arxiv.org/abs/1905.10437.
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https://arxiv.org/abs/1905.10437
http://arxiv.org/abs/1905.10437


Production considerations

Our model is essentially a linear regression
Linear regression can be trained with stochastic gradient descent (SGD)
SGD requires one sample at a time, and is thus enables online algorithm
Online learning allows learning from a stream of data
Predicting satellite positions is inherently a streaming problem, therefore
models that can be trained online should be preferred

Shameless publicity: check out creme and chantilly for online learning
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https://github.com/creme-ml/creme
https://github.com/creme-ml/chantilly


Our advice for competitive data science

“Keep it simple, stupid” (KISS principle)
Always start by setting up a local validation benchmark
When your model improves, save your work (git is your friend)
Doubt everything you do
Don’t be scared to try stuff, but don’t tunnel vision
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Code can be found on GitHub

Thank you for listening!
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https://github.com/MaxHalford/idao-2020-qualifiers

