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Decision trees
“Most successful general-purpose algorithm in modern times.” [HB12]
Sub-divide a feature space into partitions
Non-parametric and robust to noise
Allow both numeric and categorical features
Can be regularised in different ways
Good weak learners for bagging and boosting [Bre96]
See [BS16] for a modern review
Many popular open-source implementations [PVG+11, CG16, KMF+17, PGV+18]

Alas, they assume that the data can be scanned more than once, and thus can’t
be used in an online context.
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Toy example: the banana dataset 1
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1Banana dataset on OpenML
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Online (supervised) machine learning

Model learns from samples (𝑥, 𝑦) ∈ 𝐼𝑅𝑛×𝑝 × 𝐼𝑅𝑛×𝑘 which arrive in sequence
Online != out-of-core:
• Online: samples are only seen once
• Out-of-core: samples can be revisited

Progressive validation [BKL99]: �̂� can be obtained right before 𝑦 is shown to
the model, allowing the training set to also act as a validation set. No need
for cross-validation!
Ideally, concept dri t [GŽB+14] should be taken into account:
1. Virtual dri t: 𝑃(𝑋) changes
2. Real dri t: 𝑃(𝑌 ∣ 𝑋) changes:

▶ Example: many 0s with sporadic bursts of 1s
▶ Example: a feature’s importance changes through time
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Online decision trees

A decision tree involves enumerating split candidates
Each split is evaluated by scanning the data
This can’t be done online without storing data
Two approaches to circumvent this:
1. Store and update feature distributions
2. Build the trees without looking at the data (!!)

Bagging and boosting can be done online [OR01]
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Consistency

Trees fall under the non-parametric regression framework
Goal: estimate a regression function 𝑓(𝑥) = 𝐼𝐸(𝑌 ∣ 𝑋 = 𝑥)
We estimate 𝑓 with an approximation 𝑓𝑛 trained with 𝑛 samples
𝑓𝑛 is consistent if 𝐼𝐸(𝑓𝑛(𝑋) − 𝑓(𝑋))2 → 0 as 𝑛 → +∞
Ideally, we also want our estimator to be unbiased
We also want regularisation mechanisms in order to generalise
Somewhat orthogonal to concept dri t handling
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Hoeffding trees

Split thresholds 𝑡 are chosen by minimising an impurity criterion
The impurity looks at the distribution of 𝑌 in each child
An impurity criterion depends on 𝑃(𝑌 ∣ 𝑋 < 𝑡)
𝑃(𝑌 ∣ 𝑋 < 𝑡) can be obtained via Bayes’ rule:

𝑃(𝑌 ∣ 𝑋 < 𝑡) = 𝑃(𝑋 < 𝑡 ∣ 𝑌) × 𝑃(𝑌)𝑃(𝑋 < 𝑡)

For classification, assuming 𝑋 is numeric:
• P(Y) is a counter
• P(X < t) can be represented with a histogram
• P(X < t | Y) can be represented with one histogram per class
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Hoeffding tree construction algorithm

A Hoeffding tree starts off as a leaf
𝑃(𝑌), 𝑃(𝑋 < 𝑡), and 𝑃(𝑋 < 𝑡 ∣ 𝑌) are updated every time a sample arrives
Every so o ten, we enumerate some candidate splits and evaluate them
The best split is chosen if significantly better than the second best split
Significance is determined by the Hoeffding bound
Once a split is chosen, the leaf becomes a branch and the same steps occur
within each child
Introduced in [DH00]
Many variants, including revisiting split decisions when dri t occurs [HSD01]
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Hoeffding trees on the banana dataset
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Mondrian trees

Construction follows a Mondrian
process [RT+08]
Split features and points are
chosen without considering their
predictive power
Hierarchical averaging is used to
smooth leaf values
First introduced in [LRT14]
Improved in [MGS19]

Figure: Composition A by Piet Mondrian
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The Mondrian process

Let 𝑢𝑗 and 𝑙𝑗 be the bounds of feature 𝑗 in a cell
Sample 𝛿 ∼ 𝑒𝑥𝑝(∑𝑝𝑗=1 𝑢𝑗 − 𝑙𝑗)
Split if 𝛿 < 𝜆
The chances of splitting decrease with the size of the cells
𝜆 is a so t maximum depth parameter
Features are uniformly chosen in proportion to 𝑢𝑗 − 𝑙𝑗
More information in these slides
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Mondrian trees on the banana dataset
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Aggregated Mondrian trees on the banana dataset
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Purely random trees
Features 𝑥 are assumed to in [0, 1]𝑝
Trees are constructed independently from the data, before it even arrives:
1. Pick a feature at random
2. Pick a split point at random
3. Repeat until desired depth is reached

When a sample reaches a leaf, said leaf’s running average is updated
Easier to analyse because tree structure doesn’t depend on 𝑌
Consistency depends on:
1. The height of a tree – denoted ℎ
2. The amount of features that are “relevant”

Bias analysis performed in [AG14]
Word of caution: this is different from extremely randomised trees [GEW06]
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Uniform random trees

Features and split points are chosen completely at random
Let ℎ be the height of the tree
Consistent when ℎ → +∞ and ℎ

𝑛 → 0 as ℎ → +∞ [BDL08]
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Uniform random trees
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Uniform random trees on the banana dataset
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Centered random trees

Features are chosen completely at random
Split points are the mid-points of a feature’s current range
Consistent when ℎ → +∞ and 2ℎ

𝑛 → 0 as ℎ → +∞ [Sco16]
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Centered random trees
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Centered random trees on the banana dataset
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How about a compromise?

Choose 𝛿 ∈ [0, 12 ]
Sample 𝑠 in [𝑎 + 𝛿(𝑏 − 𝑎), 𝑏 − 𝛿(𝑏 − 𝑎)]
𝛿 = 0 ⟹ 𝑠 ∈ [𝑎, 𝑏] (uniform)
𝛿 = 1

2 ⟹ 𝑠 = 𝑎+𝑏
2 (centered)
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𝛿 = 0.2
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Some examples
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Banana dataset with 𝛿 = 0.2
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Impact of 𝛾 on performance
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Tree regularisation

A decision tree overfits when it’s leaves contain too few samples
There are many popular ways to regularise trees:
1. Set a lower limit on the number of samples in each leaf
2. Limit the maximum depth
3. Discard irrelevant nodes a ter training (pruning)

None of these are designed to take into account the streaming aspect of
online decision trees
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Hierarchical smoothing

Intuition: a leaf doesn’t contain enough samples... but it’s ancestors might!
Let 𝐺(𝑥𝑡) be the nodes that go from the root to the leaf for a sample 𝑥𝑡
Curtailment [ZE01]: use the first node in 𝐺(𝑥𝑡) with at least 𝑘 samples
Aggregated Mondrian trees [MGS19] use context weighting trees
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A simple averaging scheme
Idea: make each node in 𝐺(𝑥𝑡) contribute to a weighted average
Let
• 𝑘 be the number of samples in a node
• 𝑑 be the depth of a node

Then, the contribution of each node is weighted by:

𝑤 = 𝑘 × (1 + 𝛾)𝑑

The more samples a leaf contains, the more it matters
The deeper a leaf is, the more it matters
𝛾 ∈ 𝐼𝑅 controls the importance of both values
I like to call this path averaging
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Averaging on the banana dataset
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Impact of 𝛾 on predictive performance
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Dealing with concept dri t

Each node contains a running average of the 𝑦 values it has seen
Instead, we can maintain an exponentially weighted moving average (EWMA):

�̄�𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)�̄�𝑡−1
𝛼 determines the influence of the most recent values
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Hard dri t: flip 𝑦 values a ter 2000 samples
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So t dri t: slowly rotate samples around barycenter
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Feature selection

Final paragraph from [MGS19] A limitation of AMF, however, is that it does
not perform feature selection. It would be interesting to develop an on-
line feature selection procedure that could indicate along which coor-
dinates the splits should be sampled in Mondrian trees, and prove that
such a procedure performs dimension reduction in some sense. This is
a challenging question in the context of online learning which deserves
future investigations.

Online feature selection is a difficult problem!
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A solution?
1. Initially, we don’t know the importance of each feature, so we pick them at
random

2. A ter some time, we can measure the quality of each split within each tree
3. We can derive the feature importances from the splits each feature
participates in

4. Every so o ten we can build a new tree by sampling feature relative to their
importances

5. The selection probabilities should be conditioned on the features already
chosen

This is still work in progress, but there is hope.
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Parameters recap

𝑚: number of trees
ℎ: height of each tree
𝛿: the amount of padding
𝛾: determines how the path averaging works
𝛼: exponentially weighted moving average parameter
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Some useful Python libraries

scikit-garden – Mondrian trees
onelearn – Aggregated Mondrian trees
scikit-multiflow – Hoeffding trees
scikit-learn – General-purpose batch machine learning
creme – General-purpose online machine learning
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Train/test benchmarks
Moons Noisy linear Higgs Higgs*

Batch log reg .324 .244 .640 .677
Batch log reg with Fourier features .193 .213 .698 .641

Batch random forest .225 .210 .615 .639
NN with 2 layers .171 .196 .653 .637
Online log reg .334 .323 .662 .677
Mondrian forest .349 .316 .692 .905

Aggregated Mondrian forest .205 .199 .671 .649
Hoeffding forest .330 .258 .664 .649
Padded trees (us) .185 .193 .678 .644
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Streaming benchmarks

Work in progress!
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Slides are available at
maxhalford.github.io/slides/online-decision-trees.pdf

Feedback is more than welcome.

Stay safe!
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