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% Head of Data @ Carbonfact

@ PhD in database query optimisation
2~ Creator and maintainer of River

Y Kaggle competitions master



https://www.carbonfact.com/

The industry isn't ready, yet

« Batch learning works for most problems
e Real-time feature engineering isn't trivial

e See companies in this space: Tecton, Claypot, Fennel

e Feature Engineering for Personalised Search by Nick Parsons

e Lack of testimonials from the industry
 This Is the status quo: let's challenge it!


https://fennel.ai/blog/feature-engineering-for-personalized-search/
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The story behind River

init README.md
 . MaxHalford committed on Jan 24, 2019 # jacobmontiel

scikit-multiflow




Three areas of focus

f£a User experience
@ Accuracy

Throughput



2 User experience



Why choose Python?

e Easy to learn

e Good over the Internet — e.g. requests, FastAPI
e BiInding compiled extensions iIs possible

e Fast enough for many problems

e Maln language for data science and ML




Dictionaries are great

e Each feature has a name
« Naturally sparse

e Mixed types

e 1:1 equivalence with JSON
e Great support in Python




River aims to be flexible

e River caters to experimentation and production
e Inversion of control
e Users can code training loop (like PyTorch)

* High-level functions for quick experimentation




Delayed progressive validation

e Progressive validation

 Delayed progressive validation I1s even more realistic
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Real-time feature engineering

e Behind every good model there's good features
e River is mainly for ML, not for data processing

e Real-time data manipulation is trickier




Documentation

e Thereis a lack of it
e Harder than writing code, believe me

e Needs to be a distributed effort

e Luckily, some people are writing books .,



https://riverml.xyz/0.19.0/

Documentation pageviews

riverml.xyz ® 2 current visitors Sep 25, 2023 - Oct 25, 2023 30 days
Unique Visitors Site Pageviews Avg. Visit Time Bounce Rate
6,128 36.6K 12m 09s 4618%
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Simple code

e River is ~48k lines of code
e There are ~3500 unit tests
e River code tries to minimise complexity
e Many modules, separation of concerns
e [t works:

e >100 unigque contributors

e Not too many bug reports



Deployment/maintenance matters

e Batch ML

= Works well locally, easy to reason about (functional)

" Experimentation don't always hold in production
e Online ML

= Immediately thinking in terms of streaming data

" Less established patterns to draw from



Online MLOps is uncharted territory

e Many real-time requirements beyond just ML
e Feature engineering
e Monitoring
e Model tuning and selection
e Companies may have some requirements in place

e Does not recelve a lot of attention



We put a lot of thought into it
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https://www.youtube.com/watch?v=nzFTmJnIakk&list=PLIU25-FciwNaz5PqWPiHmPCMOFYoEsJ8c&index=6

Beaver

 Provides API endpoints to learn and predict
e Different systems can be plugged In:

A. Task runner (Celery, Redis, ...)

B. Message bus (Kafka, RedPanda, ...)

C. Stream processor (Materialize, Flink, ...)

. Experimental, not meant for production

>


https://github.com/online-ml/beaver

@ Accuracy




Is batch more accurate than online ML?

e | get this question a /ot
e |t's possible to compare the two, but awkward

e Reproducing production conditions is paramount



Progressive validation for batch models

e Do progressive validation, without the learning step
e Pick a retraining schedule:

A. Periodic (#samples or time-based)

B. Triggered on performance drop

e While new model is training, keep using old model

s




Decision trees do well

e Reassuring: this is also true for batch
e Hoeffding trees are well established

e Mondrian forests extremely promising




Unsupervised updates during inference

e A model may have unsupervised steps
e For instance, standard scaling features

e No need for a label to do an unsupervised update
e predict_one not being pure confuses our users &

e We removed this behaviour in River 0.19

e Can be activated via compose. learn_during_predict

o
A




Online tuning

e Not my area expertise uwy
e | usually advise having several models concurrently
e A meta-model does the orchestration:
A. How to aggregate model predictions
B. Which models are “allowed” to train
e Many approaches (expert learning, successive halving, ...)

e Main issue Is cost! Good models don't need tuning

26



Bandits

e The current best model is the one predicting
e A subset of models are updated

o Ability to trade between exploring and exploiting
= Good theory and guarantees
= Seem to work well In practice

<~ Bandits are usually stationary

27




There is no LightGBM equivalent

e scikit-learn is nice and all, but...

e People don’t like tuning models

e They want their model to work out of the box
e LightGBM almost always works

e All tabular Kaggle competitions use LightGBM

The same is needed for online learning!



Throughput



Throughput is a good problem to have

e Most people don’t even know about online ML
e I[f throughput is an issue, It means they are hooked
e Better throughput usually implies more complexity

e Not RiIver's main focus



Throughput can’t be ignored

e Real-time apps usually have high throughput needs
e Ifthey didn't, then they could just use batch learning!
» 1GB/sec seems to be a good target to reach

» 14GB/sec is the biggest workload we've heard of

e || Some models' throughput is independent of data scale

31



Latency matters too

e One way to get throughput is to distribute computation

e Distribution involves communication (between machines)
e Communication is expensive, not good for latency

e Distribution computation is also complex (e.g. Spark, Flink)

e There are rocks to squeeze with a single machine

32



Models can’t afford to be complex

e There isn't much space for fancy tricks
e Many good online models are just linear models

A. Simon Funk's Netflix solution

B. (F)FM — see Bytedance's Monolith paper

C. LInUCB for recsys — see Vowpal Wabbit

D. Logistic regression for CTR — see Google paper

33


http://www.apple.com/uk
https://arxiv.org/pdf/2209.07663.pdf
https://vowpalwabbit.org/docs/vowpal_wabbit/python/latest/tutorials/python_Contextual_bandits_and_Vowpal_Wabbit.html
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41159.pdf

Delegate the feature engineering

o |t's likely that feature engineering is the costliest task

 You could delegate this to a stream processing engine

e Examples: Flink, Materialize, RisingWave, ksqglDB, etc.

e Python would only be used for River

e This can increase throughput, but no guarantees for latency

e There is no free lunch: the good setup depends on your app

34



Python isn't ideal

e VVectorized routines are meant for batch data
e Overhead from calling C++/Rust for each sample

e High throughput environments don’t use Python



VectorDict

e Internally, many River models use dictionaries

e Python dictionaries are not designed for linear algebra
e Python’s VectorDict is a C++ dictionary implementation
e Performance gain trumps overhead from calling C++

e There isn't much more we can do &

36




Statistics implemented in Rust

| Statistics | Pure Python (s) | Rust binding (s) | x times improvement |
st et it e e |
| quantile | -+ 2.359 | 0.148 | +15.955 |
| peak to peak | 0.216 | 0.47 | 4.609 |
| EWMean | 0.158 | 0.105 | -1.512 |
| EWVar | 0.426 | 0.104 | 4.075 |
| IQR | 4.541 | 0.169 | 26.846 |
| kurtosis | - 1.785 | 0.106 | 16.872 |
| skewness | 1.086 | 0.105 | 10.354 |
| ‘Rolling Quantile | 323.520 | <77 <247 | -4.573 |
| Rolling IQR | 636.528 | 76.688 | -9.113 |

37


https://github.com/online-ml/river/pull/1025

LightRiver

e Throughput objective: 1GB/sec

e Portabillity: available in Rust, Python, CLI
» We one or two algorithms from River for each task

e LightRIver is to River what LightGBM is to scikit-learn

-


https://github.com/online-ml/light-river

LightRiver algorithms

e Anomaly detection: half-space trees
e Regression: Mondrian forests
e Classification: Mondrian forests

e Recsys: TreeUCRB, a research topic!



Mondrian cuts

feature 1

feature 2



Mondrian cuts

feature 1

feature 2



Mondrian cuts
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https://maxhalford.github.io/slides/online-decision-trees.pdf

Memory layout matters
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More iInformation courtesy of Andrew Tulloch



https://tullo.ch/articles/decision-tree-evaluation/

Mondrian tree advantages

 Tree size iIs known beforehand: good for array layout
e Speed is not a function of #features
o Ability to trade between speed and accuracy
A. Number of trees
B. Tree depth
e We hope this bet pays off!






