
 Max Halford — 2023/10/26 — TH Köln, Institute for Data Science, Engineering, and Analytics

Online machine learning
on the road

1

https://gist.github.com/
MaxHalford/

f57a540333d47b21e6eaff49
071e3ff1

https://gist.github.com/MaxHalford/f57a540333d47b21e6eaff49071e3ff1

👟 Head of Data @ Carbonfact

🎓 PhD in database query optimisation

🍥 Creator and maintainer of River

🏆 Kaggle competitions master

3

https://www.carbonfact.com/

The industry isn’t ready, yet
• Batch learning works for most problems

• Real-time feature engineering isn’t trivial
• See companies in this space: Tecton, Claypot, Fennel

• Feature Engineering for Personalised Search by Nick Parsons

• Lack of testimonials from the industry

• This is the status quo: let’s challenge it!

4

https://fennel.ai/blog/feature-engineering-for-personalized-search/

BigTech is leading the way

5

The story behind River

6

Three areas of focus

👩💻 User experience

🎯 Accuracy

⚡ Throughput

7

👩💻 User experience

8

Why choose Python?
• Easy to learn

• Good over the internet — e.g. requests, FastAPI

• Binding compiled extensions is possible

• Fast enough for many problems

• Main language for data science and ML

🐍
9

Dictionaries are great
• Each feature has a name

• Naturally sparse

• Mixed types

• 1:1 equivalence with JSON

• Great support in Python

10

👩💻

River aims to be flexible
• River caters to experimentation and production

• Inversion of control

• Users can code training loop (like PyTorch)

• High-level functions for quick experimentation

11

👩💻

Delayed progressive validation

12

👩💻

• Progressive validation

• Delayed progressive validation is even more realistic

Real-time feature engineering
• Behind every good model there’s good features

• River is mainly for ML, not for data processing

• Real-time data manipulation is trickier

13

👩💻

Documentation
• There is a lack of it

• Harder than writing code, believe me

• Needs to be a distributed effort

• Luckily, some people are writing books 🙏

📚
14

https://riverml.xyz/0.19.0/

Documentation pageviews

15

Simple code
• River is ~48k lines of code

• There are ~3500 unit tests

• River code tries to minimise complexity

• Many modules, separation of concerns

• It works:

• >100 unique contributors

• Not too many bug reports
16

Deployment/maintenance matters
• Batch ML

👍 Works well locally, easy to reason about (functional)

👎 Experimentation don’t always hold in production

• Online ML

👍 Immediately thinking in terms of streaming data

👎 Less established patterns to draw from

17

Online MLOps is uncharted territory

18

• Many real-time requirements beyond just ML

• Feature engineering

• Monitoring

• Model tuning and selection

• Companies may have some requirements in place

• Does not receive a lot of attention

We put a lot of thought into it

19

🎬 See GAIA 2022 presentation

https://www.youtube.com/watch?v=nzFTmJnIakk&list=PLIU25-FciwNaz5PqWPiHmPCMOFYoEsJ8c&index=6

Beaver

🦫
20

• Provides API endpoints to learn and predict

• Different systems can be plugged in:

A. Task runner (Celery, Redis, …)

B. Message bus (Kafka, RedPanda, …)

C. Stream processor (Materialize, Flink, …)

⚠ Experimental, not meant for production

https://github.com/online-ml/beaver

🎯 Accuracy

21

Is batch more accurate than online ML?

22

• I get this question a lot

• It’s possible to compare the two, but awkward

• Reproducing production conditions is paramount

Progressive validation for batch models

23

• Do progressive validation, without the learning step

• Pick a retraining schedule:

A. Periodic (#samples or time-based)

B. Triggered on performance drop

• While new model is training, keep using old model

👩💻

Decision trees do well

24

• Reassuring: this is also true for batch

• Hoeffding trees are well established

• Mondrian forests extremely promising

👩💻

Unsupervised updates during inference

25

• A model may have unsupervised steps

• For instance, standard scaling features

• No need for a label to do an unsupervised update

• predict_one not being pure confuses our users 🫨

• We removed this behaviour in River 0.19

• Can be activated via compose.learn_during_predict

👩💻

Online tuning

26

• Not my area expertise 🤷

• I usually advise having several models concurrently

• A meta-model does the orchestration:

A. How to aggregate model predictions

B. Which models are “allowed” to train

• Many approaches (expert learning, successive halving, …)

• Main issue is cost! Good models don’t need tuning

Bandits

27

👩💻

• The current best model is the one predicting

• A subset of models are updated

• Ability to trade between exploring and exploiting

👍 Good theory and guarantees

👍 Seem to work well in practice

👎 Bandits are usually stationary

There is no LightGBM equivalent

28

• scikit-learn is nice and all, but…

• People don’t like tuning models

• They want their model to work out of the box

• LightGBM almost always works

• All tabular Kaggle competitions use LightGBM

The same is needed for online learning!

⚡ Throughput

29

Throughput is a good problem to have

30

• Most people don’t even know about online ML

• If throughput is an issue, it means they are hooked

• Better throughput usually implies more complexity

• Not River’s main focus

Throughput can’t be ignored

31

• Real-time apps usually have high throughput needs

• If they didn’t, then they could just use batch learning!

• 1GB/sec seems to be a good target to reach

• 14GB/sec is the biggest workload we’ve heard of

• 🧂 Some models’ throughput is independent of data scale

Latency matters too

32

• One way to get throughput is to distribute computation

• Distribution involves communication (between machines)

• Communication is expensive, not good for latency

• Distribution computation is also complex (e.g. Spark, Flink)

• There are rocks to squeeze with a single machine

Models can’t afford to be complex

33

• There isn’t much space for fancy tricks

• Many good online models are just linear models

A. Simon Funk’s Netflix solution

B. (F)FM — see Bytedance's Monolith paper

C. LinUCB for recsys — see Vowpal Wabbit

D. Logistic regression for CTR — see Google paper

http://www.apple.com/uk
https://arxiv.org/pdf/2209.07663.pdf
https://vowpalwabbit.org/docs/vowpal_wabbit/python/latest/tutorials/python_Contextual_bandits_and_Vowpal_Wabbit.html
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41159.pdf

Delegate the feature engineering

34

• It’s likely that feature engineering is the costliest task

• You could delegate this to a stream processing engine

• Examples: Flink, Materialize, RisingWave, ksqlDB, etc.

• Python would only be used for River

• This can increase throughput, but no guarantees for latency

• There is no free lunch: the good setup depends on your app

Python isn’t ideal
• Vectorized routines are meant for batch data

• Overhead from calling C++/Rust for each sample

• High throughput environments don’t use Python

35

VectorDict

36

👩💻

• Internally, many River models use dictionaries

• Python dictionaries are not designed for linear algebra

• Python’s VectorDict is a C++ dictionary implementation

• Performance gain trumps overhead from calling C++

• There isn’t much more we can do 🥵

Statistics implemented in Rust

37

🦀

https://github.com/online-ml/river/pull/1025

LightRiver

🦀

• Throughput objective: 1GB/sec

• Portability: available in Rust, Python, CLI

• We one or two algorithms from River for each task

• LightRiver is to River what LightGBM is to scikit-learn

38

https://github.com/online-ml/light-river

LightRiver algorithms
• Anomaly detection: half-space trees

• Regression: Mondrian forests

• Classification: Mondrian forests

• Recsys: TreeUCB, a research topic!

39

Mondrian cuts

40

Mondrian cuts

41

Mondrian cuts

42

🌲

https://maxhalford.github.io/slides/online-decision-trees.pdf

Memory layout matters

43

More information courtesy of Andrew Tulloch

https://tullo.ch/articles/decision-tree-evaluation/

Mondrian tree advantages

44

• Tree size is known beforehand: good for array layout

• Speed is not a function of #features

• Ability to trade between speed and accuracy

A. Number of trees

B. Tree depth

• We hope this bet pays off!

45

