~ Online machine learning
on the road

&

e o
I

3

e

gl Sy e d - BYY, . = : . e e b _._.' , - ' o ! iy . &

| Max Halford — 2023/10/26 — TH Koln, Institute for Data Science, Engineering, and Analytics

3 e WA TSN VTt e e T RO BN VL. B




https://gist.github.com/

MaxHalford/

f57a540333d47b21eb6eaff49
071e3ff1



https://gist.github.com/MaxHalford/f57a540333d47b21e6eaff49071e3ff1

% Head of Data @ Carbonfact

@ PhD in database query optimisation
2~ Creator and maintainer of River

Y Kaggle competitions master



https://www.carbonfact.com/

The industry isn't ready, yet

« Batch learning works for most problems
e Real-time feature engineering isn't trivial

e See companies in this space: Tecton, Claypot, Fennel

e Feature Engineering for Personalised Search by Nick Parsons

e Lack of testimonials from the industry
 This Is the status quo: let's challenge it!


https://fennel.ai/blog/feature-engineering-for-personalized-search/

BigTech is leading the way

© =

WEIBO Microsoft

hii/ ByteDance

Practical Lessons from Predicting Clicks on Ads at
Facebook

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu; Tao Xu; Yanxin Shi;
Antoine Atallah; Ralf Herbrich; Stuart Bowers, Joaquin Quinonero Candela

6O Go gle

Monolith: Real Time Recommendation System With
Collisionless Embedding Table

Facebook
1601 Willow Road, Menlo Park, CA, United States

{panjunfeng, oujin, joaquing, sbowers}@fb.com

Zhuoran Liu Leqi Zou Xuan Zou
Bytedance Inc. Bytedance Inc. Bytedance Inc.
Caihua Wang Biao Zhang Da Tang
Bytedance Inc. Bytedance Inc. Bytedance Inc.
Bolin Zhu' Yijie Zhu Peng Wu

Fudan University

Bytedance Inc.

Bytedance Inc.

A Multiworld Testing Decision Service

Alekh Agarwal Sarah Bird Markus Cozowicz Luong Hoang
Stephen Lee* Jiaji Li* Dan Melamed Gal Oshri* Oswi
Siddhartha Sen Alex Slivkins

Microsoft Research, *Microsoft

Abstract

Applications and systems are constantly faced with deci-
sions to make, often using a policy to pick from a set of
actions based on some contextual information. We create

Ad Click Prediction: a View from the Trenches

H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young,
Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov,
Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg,
Arnar Mar Hrafnkelsson, Tom Boulos, Jeremy Kubica

Google, Inc.
mcmahan@google.com, gholt@google.com, dsculley@google.com



The story behind River

init README.md
 . MaxHalford committed on Jan 24, 2019 # jacobmontiel

scikit-multiflow




Three areas of focus

f£a User experience
@ Accuracy

Throughput



2 User experience



Why choose Python?

e Easy to learn

e Good over the Internet — e.g. requests, FastAPI
e BiInding compiled extensions iIs possible

e Fast enough for many problems

e Maln language for data science and ML




Dictionaries are great

e Each feature has a name
« Naturally sparse

e Mixed types

e 1:1 equivalence with JSON
e Great support in Python




River aims to be flexible

e River caters to experimentation and production
e Inversion of control
e Users can code training loop (like PyTorch)

* High-level functions for quick experimentation




Delayed progressive validation

e Progressive validation

 Delayed progressive validation I1s even more realistic

» prediction

t//v features — &
sample /;arn v/
\\\\\\i metric
Label >

t+d update




Real-time feature engineering

e Behind every good model there's good features
e River is mainly for ML, not for data processing

e Real-time data manipulation is trickier




Documentation

e Thereis a lack of it
e Harder than writing code, believe me

e Needs to be a distributed effort

e Luckily, some people are writing books .,



https://riverml.xyz/0.19.0/

Documentation pageviews

riverml.xyz ® 2 current visitors Sep 25, 2023 - Oct 25, 2023 30 days
Unique Visitors Site Pageviews Avg. Visit Time Bounce Rate
6,128 36.6K 12m 09s 4618%

320

240

160

80

0
SEP 25, 2023 SEP:28, 2023 OCT 01, 2023 OCT 04, 2023 OCT 07, 2023 OCT 10, 2023 OCT 13, 2023 OCT 16, 2023 OCT 19, 2023 OCT 22,2023 OCT 25, 2023

15



Simple code

e River is ~48k lines of code
e There are ~3500 unit tests
e River code tries to minimise complexity
e Many modules, separation of concerns
e [t works:

e >100 unigque contributors

e Not too many bug reports



Deployment/maintenance matters

e Batch ML

= Works well locally, easy to reason about (functional)

" Experimentation don't always hold in production
e Online ML

= Immediately thinking in terms of streaming data

" Less established patterns to draw from



Online MLOps is uncharted territory

e Many real-time requirements beyond just ML
e Feature engineering
e Monitoring
e Model tuning and selection
e Companies may have some requirements in place

e Does not recelve a lot of attention



We put a lot of thought into it

e lie,r\‘t ’

| L.e_oxminﬁ

/ \ service Lobel lir\g
M°del / \ e

/ l Model store

@ B
S‘toro«je ——— — Dasboard
!

l Pe_re. nece service -] >@ >l End user I

z See GAIA 2022 presentation



https://www.youtube.com/watch?v=nzFTmJnIakk&list=PLIU25-FciwNaz5PqWPiHmPCMOFYoEsJ8c&index=6

Beaver

 Provides API endpoints to learn and predict
e Different systems can be plugged In:

A. Task runner (Celery, Redis, ...)

B. Message bus (Kafka, RedPanda, ...)

C. Stream processor (Materialize, Flink, ...)

. Experimental, not meant for production

>


https://github.com/online-ml/beaver

@ Accuracy




Is batch more accurate than online ML?

e | get this question a /ot
e |t's possible to compare the two, but awkward

e Reproducing production conditions is paramount



Progressive validation for batch models

e Do progressive validation, without the learning step
e Pick a retraining schedule:

A. Periodic (#samples or time-based)

B. Triggered on performance drop

e While new model is training, keep using old model

s




Decision trees do well

e Reassuring: this is also true for batch
e Hoeffding trees are well established

e Mondrian forests extremely promising




Unsupervised updates during inference

e A model may have unsupervised steps
e For instance, standard scaling features

e No need for a label to do an unsupervised update
e predict_one not being pure confuses our users &

e We removed this behaviour in River 0.19

e Can be activated via compose. learn_during_predict

o
A




Online tuning

e Not my area expertise uwy
e | usually advise having several models concurrently
e A meta-model does the orchestration:
A. How to aggregate model predictions
B. Which models are “allowed” to train
e Many approaches (expert learning, successive halving, ...)

e Main issue Is cost! Good models don't need tuning

26



Bandits

e The current best model is the one predicting
e A subset of models are updated

o Ability to trade between exploring and exploiting
= Good theory and guarantees
= Seem to work well In practice

<~ Bandits are usually stationary

27




There is no LightGBM equivalent

e scikit-learn is nice and all, but...

e People don’t like tuning models

e They want their model to work out of the box
e LightGBM almost always works

e All tabular Kaggle competitions use LightGBM

The same is needed for online learning!



Throughput



Throughput is a good problem to have

e Most people don’t even know about online ML
e I[f throughput is an issue, It means they are hooked
e Better throughput usually implies more complexity

e Not RiIver's main focus



Throughput can’t be ignored

e Real-time apps usually have high throughput needs
e Ifthey didn't, then they could just use batch learning!
» 1GB/sec seems to be a good target to reach

» 14GB/sec is the biggest workload we've heard of

e || Some models' throughput is independent of data scale

31



Latency matters too

e One way to get throughput is to distribute computation

e Distribution involves communication (between machines)
e Communication is expensive, not good for latency

e Distribution computation is also complex (e.g. Spark, Flink)

e There are rocks to squeeze with a single machine

32



Models can’t afford to be complex

e There isn't much space for fancy tricks
e Many good online models are just linear models

A. Simon Funk's Netflix solution

B. (F)FM — see Bytedance's Monolith paper

C. LInUCB for recsys — see Vowpal Wabbit

D. Logistic regression for CTR — see Google paper

33


http://www.apple.com/uk
https://arxiv.org/pdf/2209.07663.pdf
https://vowpalwabbit.org/docs/vowpal_wabbit/python/latest/tutorials/python_Contextual_bandits_and_Vowpal_Wabbit.html
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41159.pdf

Delegate the feature engineering

o |t's likely that feature engineering is the costliest task

 You could delegate this to a stream processing engine

e Examples: Flink, Materialize, RisingWave, ksqglDB, etc.

e Python would only be used for River

e This can increase throughput, but no guarantees for latency

e There is no free lunch: the good setup depends on your app

34



Python isn't ideal

e VVectorized routines are meant for batch data
e Overhead from calling C++/Rust for each sample

e High throughput environments don’t use Python



VectorDict

e Internally, many River models use dictionaries

e Python dictionaries are not designed for linear algebra
e Python’s VectorDict is a C++ dictionary implementation
e Performance gain trumps overhead from calling C++

e There isn't much more we can do &

36




Statistics implemented in Rust

| Statistics | Pure Python (s) | Rust binding (s) | x times improvement |
st et it e e |
| quantile | -+ 2.359 | 0.148 | +15.955 |
| peak to peak | 0.216 | 0.47 | 4.609 |
| EWMean | 0.158 | 0.105 | -1.512 |
| EWVar | 0.426 | 0.104 | 4.075 |
| IQR | 4.541 | 0.169 | 26.846 |
| kurtosis | - 1.785 | 0.106 | 16.872 |
| skewness | 1.086 | 0.105 | 10.354 |
| ‘Rolling Quantile | 323.520 | <77 <247 | -4.573 |
| Rolling IQR | 636.528 | 76.688 | -9.113 |

37


https://github.com/online-ml/river/pull/1025

LightRiver

e Throughput objective: 1GB/sec

e Portabillity: available in Rust, Python, CLI
» We one or two algorithms from River for each task

e LightRIver is to River what LightGBM is to scikit-learn

-


https://github.com/online-ml/light-river

LightRiver algorithms

e Anomaly detection: half-space trees
e Regression: Mondrian forests
e Classification: Mondrian forests

e Recsys: TreeUCRB, a research topic!



Mondrian cuts

feature 1

feature 2



Mondrian cuts

feature 1

feature 2



Mondrian cuts

I 9anjea4

N
()
e
-
J
o
()
-

42


https://maxhalford.github.io/slides/online-decision-trees.pdf

Memory layout matters

Pointer based Arr Ay based
/\ 0|1]a]2][«]5]6]
VANV AN

x node + 1
x node + 2

o P

More iInformation courtesy of Andrew Tulloch



https://tullo.ch/articles/decision-tree-evaluation/

Mondrian tree advantages

 Tree size iIs known beforehand: good for array layout
e Speed is not a function of #features
o Ability to trade between speed and accuracy
A. Number of trees
B. Tree depth
e We hope this bet pays off!






