The challenges of online machine learning in production Or how to rethink MLOps

Max Halford — Itaú Unibanco — 2020.02.26

• I work at <u>Alan</u>

- PhD in query optimisation
- Kaggle competitions Master
- I V open source software
- I like to <u>blog</u>

eter

Machine learning

- (Supervised) ML is about:
 - Finding patterns in labeled data 1.
 - 2. Predicting the outcome of unlabelled data
- Most ML models are batch models
- Batch models are trained on a static dataset

The real world is dynamic

MLOps as we know it

(this is called a Lambda architecture)

MLOps challenges

How often should I retrain my model?
Am I backtesting my model correctly?
What if I want to update my model ASAP?
Am I sure my features can be used at prediction time?

MLOps with an online model

Unlabeled data

(this is called a <u>Kappa architecture</u>)

The benefits

- The model is (almost) always up-to-date
- Learning a new sample is cheap
- Feature extraction is reliable
- Backtesting is natural and trustworthy

The difficulties

- A. Less models to choose from
- B. Updating the model is a computational bottleneck
- C. Smaller research field and talent pool

My mission is to provide remedies to these difficulties!

- Python library for online machine learning
- Merger between creme and scikit-multiflow
- Started in January 2019
- 3 core developers from 🙋 🚺 🌌
- In use at a couple of companies

11

Bagging

Rating **Datasets** Kernel systems approximation Drift Time detection series Preprocessing Feature River extraction **Feature** Neural selection networks **Pipelines Statistical** Imbalanced **Expert** learning measures Learning

A little teaser

from river **import** compose **from** river **import** datasets from river import linear_model **from** river **import** metrics **from** river **import** preprocessing

model = compose_Pipeline(preprocessing.StandardScaler(), linear_model.LogisticRegression()

metric = metrics_ROCAUC()

for x, y in X_y: $metric = metric_update(y, y_pred)$ $model = model.learn_one(x, y)$

 $X_y = datasets_Phishing()$ # this doesn't put anything in memory

y_pred = model.predict_proba_one(x) # make a prediction # update the metric # make the model learn

Do what you want!

```
@app.route('/predict', methods=['GET'])
    payload = flask request json
    x = payload['features']
    model = db.load_model()
    y_pred = model.predict_proba_one(x)
    return y_pred, 200
    payload = flask request json
    x = payload['features']
    y = payload['target']
    model = db.load_model()
```

```
def predict():
@app.route('/learn', methods=['POST'])
def learn():
    model.learn_one(x, y)
    return {}, 201
```


Motivation

- River is great and users seem to enjoy it
- But there's no obvious way to deploy online models
- Online training involves a unique set of challenges
- We want to **delight** users

Scaling predictions is easy...

- ... if models are static
- You just have to provision multiple workers
- Each worker is provided with a copy of the model

-cortex

Auto-scaling is a convenience in 2021!

data iku H20.01 BENTOML

Online model training

- Ground truth y is attached to features on arrival
- A stream of (x, y) pairs is fed to the model
- Essentially, this is an infinite while loop

If there's too much velocity, what happens?

• Features x are stored aside when a prediction is made

It depends on the queuing system

- First in, first out (FIFO)
 - The model trains on old data first
 - The model will miss out for a while on new data
- Last in, last out (LIFO)
 - The model trains on the latest data first
 - The model might never see some data

Speed considerations

- River shines in single instance processing:
 - 5x faster than Vowpal Wabbit
 - 20x faster than scikit-learn
 - 50x faster than PyTorch
 - 180x faster than Tensorflow

Many libraries implement SGD, allowing for comparison

Mini-batching

```
model = (
    preprocessing_StandardScaler() |
    neural_network_MLPRegressor(
        hidden_dims=(10,),
        activations=(
            nn_activations_ReLU,
            nn_activations_ReLU,
            nn_activations_ReLU
        optimizer=optim.SGD(1e-4),
        seed=42
dataset = datasets.TrumpApproval()
batch_size = 32
for epoch in range(10):
    for xb in pd.read_csv(dataset.path, chunksize=batch_size):
        yb = xb.pop('five_thirty_eight')
        y_pred = model.predict_many(xb)
        model = model.learn_many(xb, yb)
```


Progressive validation

- Cross-validation is ubiquitous in batch ML
- With online ML, we have a more adequate tool
- Each sample is used for prediction and then training
- The model is validated on all the data!
- Delaying ground truth arrival allows re-enacting the past

- maxhalford.github.io/blog/online-learning-evaluation
- github.com/online-ml/chantilly/tree/master/examples/taxis

What if I want to deploy a new model?

- Say you have a model A, and implement a new model B
- Both A and B can make predictions and get trained
- Initially, only A's predictions are sent to the user
- If B outperforms A, B's predictions can be sent instead
- This can be generalised: bandits and expert learning
- Akin to canary deployment

Some notes on existing tools

HRabbit MO

Kafka

Materialize

Next steps

- This architecture looks good on paper
- It needs implementing
- Technologies have to be chosen
- We don't want to reinvent the wheel
- We want to embrace the existing ecosystem
- We're talking to actors in the field and companies

maxhalford.github.io github.com/MaxHalford <u>maxhalford25@gmail.com</u>